PIPELINE TRANSPORTATION SAFETY

VOLUME I - NTSB REPORTS, STUDIES, AND RECOMMENDATIONS

$$
1970-1979
$$

Prepared for
USS. DEPARTMENT OF TRANSPORTATION Research and Special Programs Administration

Transportation Programs Bureau Washington DC 20590

$\stackrel{\text { astract }}{ }$

document provides a compendium of all National Transportation Safety Board i) Pipeline Accident Reports (PAR) and Pipeline. Special Studies (PSS) published 1970 through 1979. Abstracts, accident causes; and NTSB recommendations ncluded.

Cey Words
eline Safety
18. Distribution Statement

Unlimited

Sesurity Classif. (of this repart)
Unclassified
20. Security Classif. (of this page)

Unclassified

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1-1
2. OBJECTIVE 2-1
3. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1970. 3-1
4. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1971 4-1
5. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1972 5-1
6. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1973. 6-1
7. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1974. 7-1
8. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1975 8-1
9. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1976 9-1
10. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1977 10-1
11. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1978 11-1
12. PIPELINE ACCIDENT REPORTS \& SPECIAL STUDIES CY-1979。 12-1
13. SUMMARY 13-1
14. INTRODUCTION

This document is a compendium of all Pipeline Accident Reports (PAR) and Pipeline Special Studies (PSS) published by the National Transportation Safety Board (NTSB) from 1970 through 1979. Abstracts have been provided for each report with special emphasis on their research and development (R\&D) aspects along with all NTSB recomendations. A sumary table of all Pipeline Accident Reports showing accident cause, pipeline type, injuries , fatalities, and property damage is also. included.

2. OBJECTIVE

The objective in preparing this compendium of the National Cransportation Safety Board (NTSB) Pipeline Accident Reports (PAR) and Pipeline Safety Studies (PSS) published from 1970-1979 was to assist in the establishment of a data base of accidents investigated by NTSB and its associated recommendations.
3. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1970

The following is the only pipeline accident report published during CY-1970. No special study was issued .

SB-PAR-70-1	Pipeline Accident Report - Low Pressure Natural Gas
	Distribution System, Burlington, Iowa, November 6, 1979.

NTSB-PAR-70-1 PIPELINE ACCIDENT REPORT - LOW-PRESSURE NATURAL GAS DISTRIBUTION
SYSTEM, BURLINGTON, IOWA, NOVEMBER 6,1969

On November 6, 1969, during a highway construction project in Burlington, Iowa, a 70,000-pound bulldozer drove over and partially collapsed the steel covers of a gas regulator pit, damaging the primary regulator. Unregulated gas entered the distribution system, causing high gas pilots and fires. The fires caused major damage to 10 homes and minor damage to 42 other homes. Property damage was estimated at $\$ 80,000$.

The NTSB determined that the probable cause of the fires was the continuous overpressure in the system to five times the normal pressure, which caused high gas flames to ignite nearby objects. The overpressure was caused by damage to the primary regulator which normally served to reduce gas pressure in the system. Contributing to the incident was the lack of knowledge by the construction crew of the location of the gas regulator, the failure of the State highway commision to notify the gas company of work in the area, and the failure of the gas company to stake out the regulator or take other steps to prevent damage to the regulator.

R \& D CONSIDERATIONS

1) Study the regulator design, maintenance, and testing procedures to determine if proper protection against overpressurization is maintained in the event of malfunction of a primary regulator.
2) Conduct a study to determine the safe maximum operating pressure for low-pressure distribution systems.

NATIONAL TRANSPORTATION SAFETY BOARD
 WASHINGTON, D. C. 20591
 PIPELINE ACCIDENT REPORT

Adopted: October 14, 1970

LOW=PRESSURE NATURAL GAS
 DISTRIBUTION SYSTEM
 BURLINGTON, IOWA
 NOVEMBER 6, 1969

I. SYNOPSIS

At 1:30 p.m. on Thursday, November 6, 1969, during a highway construction project in Burlington, Iowa, a bulldozer weighing 70,000 pounds drove over and partially collapsed the steel covers of a gas regulator pit, damaging the regulator. The regulator served to reduce high-pressure gas from about 55 p.s.i.g. $1 /$ to low pressure for distribution to 7,500 customers of the Iowa Southern Utilities Company (ISU) in this east Iowa town of 33,000 people. While the pressure was partially controlled by a monitoring or safety regulator, gas, reportedly at four to five times thenormal operating pressure, entered the distribution system. At 1:55 p.m., gas customers in the affected area started reporting high gas pilots and fires to ISU and the fire department. The high-pressure gas source was turned off about 2:20 p.m., but fires continued to be reported until 4:30 p.m.

The fires wrought major damage to the interiors of 10 houses and minor damage to kitchens and appliances in 42 others. Property damage was estimated at $\$ 80,000$.

About 35 to 40 percent of all gas pipeline accidents throughout the country are caused by damage to underground gas facilities from earthmoving or other equipment. Such accidents occur with more than twice the frequency as a result of this cause than from any other cause. There are programs in use by some States and by the gas industry which, if adopted nationally, will greatly reduce the number of accidents resulting from damage by excavating and other earth-moving equipment.

The probable cause of the fires in the houses was the continued overpressure condition of the low-pressure distribution system for an extended period of time, which allowed pressure to build up until high gas flames ignited nearby objects. The initiation of the overpressure was caused by a bulldozer which damaged the largest primary working regulator which, with other regulators, controlled the gas pressure entering the low-pressure

1/ Pounds per square inch gauge.
system; and by inadequate performance of the monitoring regulator which failed to operate to limit the gas pressure to a safe level.

Contributing causes to the damage of the regulator were: (1) the lack of knowledge on the part of construction personnel at the work site of the location of the regulator station, (2) the failure of the Iowa State Highway Comission to provide Iowa Southern Utilities Company with a copy of the revised final plans showing that the regulator station was to be included in the area to be cleared and, (3) the failure of ISU to stake out the regulator, have inspectors at the scene, or take other steps to prevent damage to the regulator.

Contributing causes to the continued overpressure condition were: (1) the delay by the bulldozer operator and the Iowa State Highway Comission Inspectors in reporting the damage to ISU due to failure to recognize the significance of the damage, and (2) the lack of overpressure relief devices on the low-pressure system.

Contributing causes to the failure of the monitoring regulator to limit the gas pressure to a safe level were: (1) the absence of a specification of the safe level in United States of America Standard B31.8 and the interim minimum Federal Safety Standards based upon USAS B31.8, and (2) the probable use of a checking procedure by ISU which did not disclose the maximum pressure which could be produced.

CONCLUSIONS

(Listed after each conclusion are page numbers in this report which contain facts and analysis leading to the conclusions.)

The Board concludes that:

1. The severing of the primary regulator spring by the bulldozer resulted in the failure of the regulator valves in a wide-open position. The monitoring regulator reacted to the flow of high-pressure gas at about 55 p.s.i.g., but did not control the pressure as necessary and allowed gas at a reported four to five times normal operating pressure to enter the low-pressure distribution system. (Pages 6, 20.)
2. The absence of a pressure relief device at the damaged regulator station or elsewhere in the low-pressure distribution system allowed the pressure to build up beyond a pressure at which fires were initiated. No such relief devices were required by the USAS B31.8 Code, which provided for either a monitoring regulator or relief device, but not both. (Pages 21, 28.)
3. About 25 minutes were required for the pressure to build up in this large, integrated low-pressure distribution system after the regulator was damaged. (Page 26.)
4. Regulator station $\mathrm{R}-5$ generally complied with the overpressure protection requirements of USAS B31.8 Code and ISU's standards insofar as its design was concerned; however, the adjustment and checking of this station did not comply with the code requirements, in that the pressure produced by the monitoring regulator was above a safe pressure. (Pages 21, 22, 30, 31.)
5. The maximum allowable operating pressure for low-pressure distribution systems was not adequately defined in the USAS B31.8 Code, the interim standard, or in the minimum Federal Safety Standards issued by Office of Pipeline Safety. There was no definition of the maximum pressure to which the monitoring regulator should have been set, and the code allowed the setting of an unsafe pressure. (Pages 20, 31.)
6. The monitoring regulator installed at station R-5 could not be adjusted to comply with ISU's standards. Furthermore, this standard was unrealistic and was probably ignored when the monitoring regulator was adjusted. (Pages 30, 31.)
7. It could not be determined whether the monitoring regulator was inspected and checked as frequently as required by ISU due to a lack of records. The relevant USAS B31.8 Code, which was the basis of the interim Federal Safety Standards, does not specify the keeping of maintenance records. (Pages 21, 22, 29, 30.)
8. The control line to the monitor, buried under only 1 foot of cover, was bent. Had it been broken, the monitor would not have operated, and the overpressure to 7,500 customers would have been of the order of 200 times
the normal operating pressure instead of the four to five times normal actually encountered. Thus this accident narrowly escaped becoming a catastrophe of very large proportions. (Pages 16, 21, 28, 29, 30.)
9. The damage to the monitoring (safety) regulator control line was contrary to the intent of the USAS B31.8 Code and the ISU Standard, but these standards are nonspecific as to the protection against mechanical injury required, and are unenforceable in this respect, as written. (Page 29.)
10. The overpressure condition of the system was prolonged after the pressure was shut off by the failure of ISU to vent the gas pressure in the low-pressure system by disconnecting system piping. (Page 28.)
11. The numerous meetings conducted by the State Highway Commission to discuss various aspects of the project and problems to be encountered failed to provide the necessary information to the proper parties to avoid the damaging of the regulator by the bulldozer. (Pages 4, 6, 26,
$39,40,41$.)
12. The Iowa State Highway Comission procedures for preventing accidents of this type were satisfactory. However, these procedures were not properly implemented. (Pages 4, 6, 26.)
13. Neither the 331.8 Code nor the minimum Federal Safety Standards issued August 12, 1970, have provisions which would have required ISU to have formal procedures for the prevention of damage of its underground facilities. (Page 23.)
14. Even though ISU thought the regulators would not be endangered by the proposed construction work, a short distance away, the distance and possibility of damage was such that it should have taken some type of positive action to prevent damage to such an important installation as the regulator which was subsequently damaged. (Pages 4, 6, 24, 25, 26.)
15. The contractors failed to heed the notes in the final construction plans, warning that the location of underground facilities shown in the plans were approximate and that it was the contractors' responsibility to determine the exact location and avoid any damage. (Pages 4, 10, 26.)
16. ISU's telephone facilities were inadequate to receive emergency calls from its consumers during the accident, and this resulted in a long delay in learning the source of the trouble. (Pages 11, 28.)

PROBABLE CAUSE

The probable cause of the fires in the houses was the continued overpressure condition of the low-pressure distribution system for an extended period of time, which allowed pressure to build up until high gas flames ignited nearby objects. The initiation of the overpressure was caused by a bulldozer which damaged the largest primary working regulator which, with other regulators, controlled the gas pressure entering the low-pressure system; and by inadequate performance of the monitoring regulator which failed to operate to limit the gas pressure to a safe level.

Contributing causes to the damage of the regulator were: (1) the lack of knowledge on the part of construction personnel at the work site of the location of the regulator station; (2) the failure of the Iowa. State Highway Comission to provide Iowa Southern Utilities Company with a copy of the revised final plans showing that the regulator station was to be included in the area to be cleared and, (3) the failure of ISU to stake out the regulator, have inspectors at the scene, or take other steps to prevent damage to the regulator.

Contributing causes to the continued overpressure condition were: (1) the delay by the bulldozer operator and the Iowa State Highway Comission Inspectors in reporting the damage to ISU due to failure to recognize the significance of the damage, and (2) the lack of overpressure relief devices on the low-pressure system.

Contributing causes to the failure of the monitoring regulator to limit the gas pressure to a safe level were: (1) the absence of a specification of the safe level in United States of America Standard B31.8 and the interim minimum Federal Safety Standards based upon USAS B3I.8, and (2) the probable use of a checking procedure by ISU which did not disclose the maximum pressure which could be produced.

RECOMENDATIONS

(Listed after each recommendation are the numbers of the conclusions upon which such recomendations are based)

The Safety Board recommends that:

1. The Office of Pipeline Safety of the Department of Transportation take the following actions:
(a) Require in the minimum Federal Safety Standards that each gas utility establish a program for the prevention of construction-originated damage to its underground facilities. This program should contain provisions: (1) for education and general liaison with contractors and their machine operators; (2) for obtaining notices of construction work in close proximity to underground gas facilities; (3) to insure that gas. facilities are marked or otherwise protected during such construction work; and (4) to followup and investigate accidents which do occur, to determine where the program failed and how it can be strengthened. (Conclusion 13, Appendix IV.)
(b) As a part of its enforcement activity, study the regulator design, maintenance, and testing procedures of the utilities under its direct jurisdiction, including municipal operations not regulated by States, to determine whether gas consumers will be properly protected against overpressurization in the event of a malfunction of a primary regulator. This would include sampling observations to determine whether regulators are adjusted properly, maintained, and tested on a regular basis so that they will function correctly, and whether the control line is protected from damage. (Conclusion 1, 4, and 8.)
(c) Conduct a study to determine what constitutes a safe maximum operating pressure for low-pressure distribution systems. Further, use the results of such study in formulating minimum Federal Safety Standards, so that the desired pressure and the correct functioning of monitoring regulators and other overpressure protection devices will be defined. (Conclusion 5.)
(d) Review the ability of the gas utilities under its direct jurisdiction to receive and process telephonecalls during emergencies. Determine whether a minimum Federal Safety Standard is necessary. (Conclusion 16.)
2. All States, the District of Columbia, and Puerto Rico take the following actions:
(a) Consider the enactment of legislation to require: (1) persons planning to excavate or blast to notify the gas utility operating in the area (Conclusion 13, Appendix III), and (2) local authorities and others who issue construction permits to cooperate with the gas utilities to facilitate the obtaining of notices of proposed excavation. (Appendiz IV.)
(b) Encourage utilities having underground facilities in the same area such as gas, electric, and telephone, etc., to establish a coordinated notification facility, where practicable, so that a person planning to excavate or blast can inform all utilities by making one telephone call. (Appendix IV.)
(c) Review the regulator design, maintenance, and testing procedures of the gas utilities under State jurisdiction to determine whether all gas consumers will be properly protected against overpressurization in the event of a malfunction of a primary regulator, along the same lines recomended in 1 (b), above. (Conclusion 4.)
(d) Review the ability of the gas utilities under their jurisdiction to receive and process telephone calls during emergencies. (Conclusion 16.)
3. Iowa Southern Utilities, Inc., take the following actions:
(a) Review its own regulator design, maintenance, and testing procedures to determine whether its gas consumers will be properly protected against overpressurization in the event of a malfunction of a primary regulator. (Conclusions 4, 6, 9.)
(b) Establish a written procedure for preventing damage to underground facilities. The program should contain the same methods recommended to the Office of Pipeline Safety, above. (Conclusion 13, Appendix IV.)
(c) Improve fis ability to receive and process telephone calls during emergencies. (Conclusion 16.)
(d) Develop a written, comprehensive regulator maintenance and testing procedure to assure proper operation during normal use and in the event of emergencies, pending any government-originated requirements. Appropriate records of maintenance work performed should be made. (Conclusion 7.)
4. The Iowa State Highway Comission take the following actions:
(a) Revise its procedures so that its inspectors, who will be assigned to a construction job, are aware of the various aspects of the project and problems of interference with utilities. (Conclusions 11, 12.)
(b) Provide copies of the final construction plans and specifications to all parties involved in the project, such as gas and other utilities, and city officials. (Conclusion 12.)

BY THE NATIONAL TRANSPORTATION SAFETY BOARD:
/s/ JOHN H. REEDChairman
/s/ OSCAR M. LAURELMember
/s/ FRANCIS H. MCADAMS
Member
/s/ LOUIS M. THAYER
Member
/s/ ISABEL A. BURGESS
Member

This study points out that by reducing the time between pipeline failure Id shutdow, the accident effects can be minimized or eliminated. The use of ıvices such as excessive flow shutoff devices, automatic or remote controlled Ilves,etc., could have prevented or minimized every accident discussed in this udy.

D CONSIDERATIONS
R\&D requirement

DEPARTMENT OF TRANSPORTATION NATIONAL TRANSPORTATION SAFETY BOARD

Honorable John A. Volpe Secretary of Transportation 400 Seventh Street, S. W. Washington, D. C. 20590
Dear Mr. Secretary:

The National Transportation Safety Board has recently conducted a study entitled, "The Effects of Delay in Shutting Down Failed Pipeline Systems and Methods of Providing Rapid

In many recent pipeline accidents, a delay in promptly shutting down the failed pipeline system has magnified the effects of the accident. The study points out that by reducing the time between failure and shutdown, the accident effects can be minimized or eliminated. Equipment and procedures, which could have prevented the accidents discussed in the study if they had been employed, are currently available and in use by some pipeline operators on a limited basis. The study discusses in general terms some of the methods and types of equipment that are available to the industry at present to obtain rapid shutdown of failed facilities. The equipment is quite varied, ranging greatly in complexity and in cost.

Use of the rapid shutdown equipment and plans vary greatly within the gas and liquid pipeline industries, mainly because there are no industry guidelines or Federal requirements as to what constitutes a reasonable period of time between a failure and a shutdown.

The need for such Federal regulation is pointed out by the fact that the current regulations would not have prevented any of the tragic accidents referred to in the study.

The study also discusses the degree of security to be provided to the public.

On the basis of the study, the National Transportation Safety Board recommends that:

> The Office of Pipeline Safety of the Department of Transportation conduct a study to develop standards for the rapid shutdown of failed natural gas pipelines and work in conjunction with the Federal Railroad Administration to develop similar standards for liquid pipelines.

The purpose of the rapid shutdown is to reduce the amount of hazardous materials released, and any method which will quickly reduce the amount released should be considered.

The degree of security provided by the standards should also consider the relative hazard of the commodity, the size of the population-at-risk at points along the pipelines, and the potential damaging effects on property and the environment. Two special factors concerning the population-at-risk should be taken into account; namely, (1) that in most situations the risk is concentrated in the relatively small proportion of the population near pipelines, whereas the remainder of the population benefits with lesser risk from the use of the commodities, and (2) that the population-at-risk is often unaware of the hazard and therefore unable to escape it or guard against it, and is dependent upon the protection of the regulations. The risk to those near pipelines should not be appreciably greater than the risk to the remainder of the po A substantially greater effort to should be provided than would be jo ce of safety measures against the justified by balancing the cost

Sincerely yours,

John H. Reed Chairman

RECOMMENDATION

On the basis of this study, the National Transportation Safety Board recommends that:

The Office of Pipeline Safety of the Department of Transportation conduct a study to develop standards for the rapid shutdown of failed natural gas pipelines and work in conjunction with the Federal Railroad Administration to develop similar standards for liquid pipelines.

The purpose of the rapid shutdown is to reduce the amount of hazardous materials released, and any method which will quickly reduce the amount released should be considered.

The degree of security provided by the standards should also consider the relative hazard of the commodity, the size of the population-at-risk at points along the pipelines, and the potential damaging effects on property and the environment. Two special factors concerning the population-at-risk should be taken into account; namely, (1) that the population is often unaware of the hazard, and therefore unable to escape it or guard against it, and (2) that in many situations the risk is concentrated in a relatively small proportion of the population near pipelines in order to achieve benefits for the remainder of the population. The risk to those near pipelines should not be appreciably higher than the risk to the remainder of the population. A substantially greater degree of security for those near pipelines should be provided than would be indicated by requiring that the cost of the safety measures be justified entirely by the lives to be saved.

BY THE NATIONAL TRANSPORTATION SAFETY BQARD:

/8/	JOHN H. REED
	Chairman
/8/	OSGAR M. LAUREL
	Member
/8/	FRANCIS H. MCADAMS
	Member
/s/	LOUIS M. THAYER
	Member
/s/	ISABEL A. BURGESS
	Member

December 30, 1970. Tus

NISB-PAR- Y1-1 PIPELINE ACCIDENT REPORT - MOBIL OIL CORP., HIGH-PRESSURE

 NATURAL GAS PIPELINE ACCIDENT, HOUSTON, TEXAS, SEPTEMBER 8, 1969On September 9, 1969, a 14-inch pipeline carrying natural gas at 780-psig pressure, ruptured in a newly-constructed residential subdivision near Houston, Texas. All residents were evacuated, and about 10 minutes later, the escaping gas exploded violently. Thirteen houses were destroyed by the blast. In all, 106 homes were damaged and property damage was estimated at $\$ 500,000$. There were no deaths, but nine people were injured, two seriajudy.

The NTSB determined that the probable cause of the accident was the rapturing of the pipe along a weak zone in the electric resistance weld made when the pipe was manufactured in 1941, due to the subjecting of the pipeline to higher pressures than it ever before experienced. Also contributing to the high pressure was the setting of the pressure regulator at levels above the maximum allowed by the American Standards Association Code and the failure of Federal and State regulations to limit the maximim operating pressure.

R \& D CONSIDERATIONS

1) Conduct a study to develop standards for the rapid shutdown of a failed pipeline.

T. Report No. NISB-PAR-71-1	2.Govermment Accession Mo	3.Recipient's Cetalog No.	
4. Title and Subtitle, Pipeline Accident Report Mobil Oil Corporation, ligh-Pressure Natural Gas Plpeline Accident, Bouston, Texas, September 9, 1969		5. Report DateJuly 1, 19716. Performing Organization Code	
7. Author (s)		8. Performing Organization Report No.	
9. Performing Organization Name and Address Bureau of Surface Iransportation Safety National Iransportation Safety Board Washington, D. C. 20591		10.Work Unit Mo.	
		IV.Contract or Grant Mo.	
		13. Type of Report andPerlod CoveredPlpeline Accident Report(accident on September 9, 1969-14.Sponsoring Agency Code	
12.Sponsoring Agency Name and Address MATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20591			
15.Supplementary Notes			
16.Abstract At $3: 40 \mathrm{p} . \mathrm{m}_{\text {. on }}$ September 9, 1969, a 14-inch pipeline carrying natural gas at a pressure of more than $780 \mathrm{p} .8 .1 . \mathrm{g}$. ruptured in a residential subdivision $3 \frac{1}{4}$ miles north of Houston, Texas. All residents were evacuated, and about 8 to 10 minutes later, the escaping gas exploded violently. Thirteen houses, ranging from 24 feet to 250 feet from the rupture, were destroyed by the blast. The leaking gas caught fire and burned for $1 \frac{1}{2}$ hours until valves on either side of the leak were closed by Mobil workmen. In all, 106 houses were damaged, and property damage was estimated at $\$ 500,000$. Mraculousiy, there were no deaths, but 9 people were injured, 2 seriously. The National Transportation Safety Board determines that the probable cause of the accident was the rupturing of a length of pipe along a weak zone in the electric resistance weld made when the pipe was manufactured in 1941 , due to the subjecting of the pipeline to pressures higher than ever before experienced. Contributing causes to the rupture were: (1) the setting of the regulators to control the gas pressure at levels higher than the maximu allowable operating pressure permitted by the American Standards Association Code for Pressure Piping, and higher than the pressure to which the pipeline was tested, (2) the lack of any writter procedures for making the tie-in, (3) the failure of the Federal or State regulations to limit the maximum operating pressure. Contributing to the extent of the damage was the delay in shutting down the pipeline after the rupture occurred.			
17. Key Words Pipeline accid accident investigation, gas destroyed, pipe seam failur pressure regulators, pipeli ating procedures, hoop stre ating presaure, pipeline ah	at, natural gas pipeline, explosion, gas fires, houses hydrostatic testing, high etandards, pipeline opers, maximm allowable opertdown delays.	78.Distribution Statement Released to public Unlimited distribution	
19. Security Classification (of this report) UNCLASSIFIED	20. Security Classification (of this page) UNCLASSIFIED	21.No. of Pages	$\begin{gathered} \hline 22 . \text { Price } \\ \$ 3.00 \end{gathered}$

NTSB FOrm 1765.2 (11/70)

IV. CONCLUSIONS

The National Transportation Safety Board concludes that:

1. The operating pressure permitted on the pipeline at the point and time of failure was higher than the maximum allowable working pressure as determined by Mobil Oil Corporation (Mobil) by use of the American Standards Association Code for Pressure Piping, and was also higher than the pressure to which the line had been tested. This operating pressure, as controlled by the setting of the upstream regulator, was established to provide for an increased flow rate.
2. The blocking of the line downstream to make a tie-in, and the continued packing of gas into the pipeline, allowed the pressure in the segment of pipeline which ruptured to be higher than at any time in the past.
3. The pressure control regulators did not control the pressure in the line as intended; the valve on one controlled the pressure 20 p.s.i.g. below its setting; on the second, 11 p.s.i.g. above its setting, and the third did not function, allowing the pressure downstream to exceed the set pressure by 165 p.s.i.g.
4. Even if the regulators had performed as intended, the accident still could have occurred. The basic design of the system and regulator operation did not assure that the maximum allowable pressure would not be exceeded.
5. There were no written procedures for tying in the relocated section of pipe, and there was no consideration of the pressure levels that would be reached by the tie-in operation. Written procedures for each planned shutdown of a section of pipeline are not specifically required by the Federal regulations.
6. The Texas Railroad Commission regulations in effect at the time of the accident did not restrict the maximum operating pressure when that pressure was established prior to the effective date of the regulations.
7. Most of the destruction and injuries occurred when the gas leaking from the ruptured pipe exploded and burned 8 to 10 minutes after the failure.
8. Current Federal regulations would have restricted the allowable operating pressure to a point below the pressure at which the failure occurred.
9. Mobil was not operating the pipeline in compliance with the code provisions requiring protection against accidental overpressuring.
10. The monitoring system in use prior to the accident was inadequate to detect promptly failures of the pipeline. Even though pressures and flow rates at a number of points along the pipeline were telemetered to the dispatcher at the Beaumont refinery, he did not become aware of the rupture until he received a radio message 15 minutes after the failure.
11. After the accident, Mobil made changes in the operation of the line to improve its safety. Had these changes been made prior to the accident, it would have been prevented.
12. The use of joint factors in determining maximum allowable operating pressure for existing pipelines is not stated clearly in the B31.8 Code or the Federal regulations.
13. The maximum allowable operating pressures, determined after the accident and retesting program, were obtained by the incorrect use of a joint factor of 1.00 instead of 0.85 for ERW pipe, thereby permitting operation of the line at higher pressures.
14. The weak zone in the electric resistance weld (ERW) pipe, present since manufacture, would not have been a factor had the pressure in the line been controlled at a level reflecting its test-pressure and past-operating-pressure levels. The subsequent ERW seam failures, which occurred during hydrostatic test after the accident, point out that even though certain defects existed, they did not create problems as long as the operating pressure in the pipeline was controlled to a point well below test pressures.

v. GENERAL CONCLUSIONS

This accident involving an older pipeline, typifies the situation with many natural gas and liquid pipelines in the United States. This pipeline included an old flaw of a type not identified, probably not identifiable when the pipe-was made, possibly not identifiable today. These lines rely upon pressure testing under conditions which will not be hazardous, should a break occur, to demonstrate their continued safety, and also upon adequate control of operations to prevent overpressure. Neither of these conditions was present here. The line had never been pressure-tested to a pressure that the system allowed to be present, and the control of operations was not sufficient to prevent overpressure. In addition, population growth had brought homes quite close to the pipeline. Because of this factor, many homes were destroyed and serious loss of life was averted only because ignition of the gas did not occur until evacuation was complete.

The Safety Board has dealt with the factor of delay in shutting down lines and the need to minimize the loss of gas in a special study, "Effects of Delay in Shutting Down Failed Pipeline Systems and Methods of Providing Rapid Shutdown."

It is important to note the key role of the so-called "grandfather clause" approach to regulating older lines in this accident.

The B31.8 Code, the rules of the Texas Railroad Commission, and the Federal regulations did not require pressure reductions on existing lines in most instances. This permitted pipelines to be operated at pressures above that for which they were tested.

Thus, grandfather clause effects, which tend to resist hazard-reducing changes in the operation of older lines (as distinguished for reconstruction), were found here in private standards, State regulations, and indirectly in the Federal regulations, since the predominant State regulations were required to be the basis
of the initial Federal regulation. The allowing of safety exemptions under grandfather clauses is not such a new practice in safety regulation. Such clauses are seldom, if ever, written for a safety purpose. Most often, grandfather clauses are intended to reduce resistance to new laws or regulations on the part of those who would have to make costly changes to reach the new levels of safety. In this case, it is clear that the grandfather clause approach was an underlying cause of this accident.

It is to be noted that, after the first set of standards adopted by the Secretary of Transportation under the Natural Gas Pipeline Safety Act of 1968, additional regulations are subject to the grandfather clause approach to only an insignificant degree. Under Section 3(b) of the Act, the Secretary can require effective standards of inspection and testing during the later life of a pipeline which can insure its safe operation, and if the Secretary finds a hazardous condition, he can require any form of correction which will remove the hazard. It appears that, although the grandfather clause approach in earlier standards was an underlying cause of this accident, there is no need to urge the demise of its effects in private or State standards, for Congress has wisely insured that older inadequate practices will no longer be automatically protected.

VI. PROBABLE CAUSE

The National Transportation Safety Board determines that:

The probable cause of the accident was the rupturing of a length of pipe along a weak zone in the electric resistance weld, made when the pipe was manufactured in 1941, due to the subjecting of the pipeline to pressures higher than ever before experienced.

Contributing causes to the rupture were: (1) the setting of the regulators to control the gas pressure at levels higher than the maximum allowable operating pressure permitted by the American Standards Association Code for

Pressure Piping, and higher than the pressure to which the pipeline was tested, (2) the lack of any written procedures for making the tie-in, and, (3) the failure of Federal or State regulations to limit the maximum operating pressure.

Contributing to the extent of the damage was the delay in shutting down the pipeline after the rupture occurred.

VII. RECOMMENDATIONS

The National Transportation Safety Board recommends that:

1. The Office of Pipeline Safety of the Department of Transportation take the following actions:
(a) Review the methods used by pipeline operators to protect existing transmission lines against accidental overpressuring upon the failure of pressure control equipment. This review should be made in conjunction with the States. If problem areas are detected, adequate regulatory action, including rulemaking, should be undertaken to assure protection against overpressuring.
(b) Clarify the Federal regulations pertaining to the determination of maximum allowable operating pressure for existing pipelines so that the joint factor in use when the pipe was manufactured is utilized for current computations.
2. The Mobil Oil Corporation take the following actions:
(a) Recalculate the present maximum allowable operating pressure on this pipeline, utilizing a joint factor of 0.85 for the ERW sections of the line, and reduce the pressure at which the line is operated, where necessary, to comply with these new calculations.
(b) Prepare written procedures for each planned shutdown of sections of its pipeline system. In addition to general requirements for all planned shutdowns, these specific procedures should include methods of handling specific problems which might be encountered during each shutdown.
3. American Society of Mechanical Engineers Gas Piping Standards Committee take the following action:
(a) Develop guidelines for procedures to be prepared by operators of gas systems for each planned shutdown of a section of pipeline system. In addition to general requirements for all shutdowns, these procedures should include methods of handling specific problems which might be encountered during each shutdown. These guidelines should be included in the ASME "Guide for Gas Transmission and Distribution Piping Systems" and recommended for use in complying with the operating and maintenance plan requirements of paragraph 192.605 of the Federal regulations.
The Safety Board wishes to point out the following recommendation made in its special study of Effects of Delay in Shutting Down Failed Pipeline Systems and Methods of Providing Rapid Shutdown:"
"The Office of Pipeline Safety of the Department of Transportation conduct a study to develop standards for the rapid shutdown of failed natural gas pipelines and work in conjunction with the Federal Railroad Administration to develop similar standards for liquid pipelines." This recommendation was made February 12, 1971, partially in response to the events of this accident which is cited."

NTSB-PAR-71-2 PIPELINE ACCIDENT REPORT - COLONIAL PIPELINE CO. 2

 PETROLEUM PRODUCTS PRIPELINE, JACKSONVILLE, MARYLAND, SEPTEMBEROn September 2, 1970, a pipeline leak occurred near Jacksonville, Maryland. Residents of the area detected gasoline odors and noticed gasoline in a small creek which flowed through the area. The pipeline company shut down the pumping stations and pressure was reduced.
Contractors worked continuously for 20 hours to locate the leak in the 30-inch arc-welded pipeline. The next day, an explosion occurred followed by a fire. There were no fatalities,but five workmen were burned. Four days later, the leak was located. A flaw in the pipe had caused a weak spot which failed, allowing the gasoline to leak. Repairs to the pipe were made in place, and the system was placed back into operation.

The NTSB determined that the probable cause of the leak was a flaw in the pipe wall of undetermined origin, which failed after a period of constantly fluctuating pumping pressures. The probable cause of the explosion was the ingestion of gasoline-vapor-rich atmosphere by the diesel engine in a backhoe which resulted in the speeding up and backfiring of the engine, igniting the atmosphere. Contributing to the ignition of the vapor-laden atmosphere was the lack of planning and precaution in the operation and positioning of the backhoe without the use of a vapor-detecting device.

R \&D CONSIDERATIONS

I) Study current recording meter practices in the liquid pipeline industry to determine the existing state-of-the-art in detecting small pithole-type leakage by meter variance, particularly regarding large diameter pipeline operating at high volmes.

4. Title and Subtitie Pipeline Accident ReportColonial Pipeline CorpanyPetroloum Producte PipelineJecksorytile. Maryland - September 3. 19707. Author(s)		5.Report Date December 8, 1971 6.Performing Organization Code			
		B. Performing Organization Report No.			
9. Performing Organization Name and Address Buzeau of Surface Transportation Safety National Transportation Safety Board Washington, D. C. 20591		10. Work Unit No.			
		11.Contract or Grant Mo.			
		13. Type of Report andPerlod CoveredPipeline Accident ReportSeptember 3, 1970			
NATIONAL TRANSPORTATION SAFETY BOARD Hashington, D. C. 20591					
		14.5ponsorimy Agency Code			
15. Supplementary Notes					
16.Abstract —.- On September 2, 1970, a pipeline leak occurred in the Colonial Pipeline System near Jacksonville, Maryland. Cont-actors worked continuously for 20 hours to find the leak, and on the next day at 5:50 p.m. an explosion occurred followed by a fire. There were no fatalities, but five workmen were burned. The National Transportation Safety Board determines that the probable cause of the leak was a flaw of undeternined origin in the pipe wall, crater-like in appearance, wide at the surface and narrowing down to a thin metai membrane, which failed after a period of constanti: fluctuating pumping pressures. The probable cause of the explosion $\mathrm{ai}_{\mathrm{i}} \mathrm{f}$ fires was the ingestion of the gasolire vapor-rich atmosphere by diesel engine which resulted in the speeding up and backfiring of the engine, igniting the atmosphere. The engine of the backhoe was working downill and downind of a ditch partially filled with gasoline. Contributing to the accident were the lack of planning and precaution in the operation and ponitioning of the backhoe, in the training of the workmen in asfe working procedures, and in the fallure to use vapor detecting devices.					
19. Security Clessification (of this report) UMCLASSIFIED	20.Security Classification (of this page) UNCLASSIFIED	21. No. of Pages $4 ?$	$22 . \operatorname{Price}$ $\$ 3.00$		

and clorhing required for this work, the kind of powered equipment permitted in a vapor filled area, the vaportesting instruments to be unilized, or the rapor concentration levels at which men are allowed to work. Specific precautionary measures and procedures for this type of work are found in the Petroleum Safety Date Sheet PSD 2200 "Repairs To Crude Oil, Liquefied Perroleum Gas, and Prodacts Pipelines" compiled by the American Petroleum Institute. The API data sheet is referenced in the USAS B31.4-1966, Liquid Petroleum Transportation Systems, which was in effect at she time of the leak and referred to by some sections of 49 CFR 195. However. section 195.422(a) does not make specific reference to B31.4 and thus even the voluntary guide lines are not referted to by the Federal regulations for pipeline repair.

IV. CONCUSIONS

ithe National Transportation Safety Board concludes that:

1. The leak was due to the failure of a thin membrane of seel in a crater-like flaw in the pipe wall. Although the ca $\&$ of the flaw was nor determined, nor conclu sively identified as to type, it shoulr have been derected at some point after it developed and before the pipe was buried, either (a) at the seel mill. (b) prior to shipment to the coating plant. (c) at the coating piont after the cleaning process. or (d) during the final hydrostatic test. Adequare inspection was not made in at least onc of these areas, hence the pipe flaw remained undetected for years.
2. Colonial officials did not (a) remove the defective section for metallurgica! analy sis. or (b) dispatch experts to the scene of the flow to artempr to determine the cause, or (c) take adequate professional photagraphs for sudy by metallungists at a heter time.
3. The leak could not be detected by the metering system or the pressure gauges used by Colonial. This lange diameter pipeline, pumping at high volumes. docs not have either meters or pressure gauges sensitive enough to detect leaks or scepages of this magnitude.
4. Inadequate .liaison and cooperation was a!fected by Colonial with the Jacksonville Volunteer Fire Company prior to the accident If this fire company had been provided with pertinent information, it would have been able to ascertain the prevailing hazardous conditions. Additional fire equipment could have been called and the available fire equipment would have been ready.
5. Colonial, did not notify any other affected civil agencies, request their aid, or suggestions. or alert them to the potential hazard. .
6. Colonial's activity during this period was focused on getting the pipeline back into operation as rapidly as possible.
7. Colonial did not hold an effective briefing session with the contractors to explain the conditions. to discuss the method of operations. and to outline work afery procedures.
8. The work area was not chected for safe working conditions prior to or during the leak search activitics. A hazardous vapor detector was not on hand at the site: engine-driven equipment was allowed to work in a vapur-laden area: men and equipment were allowed to work downwind and dewnhill of the gasoline fumes.
9. No clearcut emergency procedure was. preparcd. no explosion or fire was anticipated. and the location and telephone numbers of the nearest first aid. ambulance. and hospital facilities were not known.
10. Colunial did not folluw the rules outlined
in their own "Emergency Directory regarding notification of outside, affected geencies, prevention of personal injury and property damage: use of fire foam to prevent vaporization: clearance of the repair erea of hazardous vapors; and location of equipment in relation to vapors and air movement.
11. Contractors' work crews had received no formal training or indoctrination in pipeline maintenance work. The instruction received was "on-the.job" type training, with "seasoned" men working alongside "green" men.
12. The Federal regulation on pipeline repairs, 49 CFR 195.422(a), is vague, nonobjective and does not frovide for any specific action on the part of carriers.
13. Contractors' work crews were improperily dressed to work in and around a hazaidous vapor area.
14. Unnecescary personnel were allowed to stand over the ditch. watching the activity after they had been relieved by other workers.
15. The diesel engine backhoe did not have any exhaust protective equipment which might have prevented the vapor ignition.

V. PROBABLE CAUSE

The National Transportation Safety Board determines that the probable causc of the leak was a flaw of undetermined origin in the pipe wall, which failed after a period of constantly fluctuating pumping pressures.

The probable causc of the explosion and fires was the ingestion of the gasoline vapor-rich atmosphere by the diesel engine in a backhoe which resulsed in the speeding up and backfiring of the engine, igniting the atmosphere. The backhoc was working downhill and downwind of a ditch partially filled with gasoline.

Contributing to the ignition of the vapor-laden atmosphere was the lack of planning and precaution in the operation and positioning of the backhoe without the use of any vapor-detecting device.

Contributing to the amount of accumulated gasoline was the long period of dry weather preceding the accident (which had dehydrated the soil in the area), the existing rock strata which underlaid the pipeline from the leak sire down to the accident area. and the more than usual amount of backfill over the pipeline which kept the gasoline from surfacing. The large underground column of entrapped gasoline, which was released suddenly by digging operations, deluged the work area with gasoline fumes.

VI. RECOMMENDATIONS

The National Transportation Safety Roard re:ommends that:

1. The Federal Railroad Administration of the Department of Transportation initiate an amendment to the Code of Federal Reguiations. Title 49. Section $195.2(1)$. Material inspection. requiring specific inspection criteria. This recommendation is not intended to deletc or mitigate any visual. mechanical, or nondesiructive inspection practices already in existence. but to prescribe a system of inspection at strategic points in the manufacture. transportation. and further processing of the pipe before it is buried in the ground.
2. The Federal Railroad Administration undertake a study of the current metering practices in the liquid pipeline industry. with the possible assusian:e of qual:fied pipeline groups, to determine the existing state of the art in detecting small pithole-type leakage by meter variance with particular regard to large diameter pipelines operating at high volumes. The study stould
include those pipelines whose pumping operations are regulated by the use of recording meters which monitor the receipts and deliveries and are set to shut down or otherwise inform the pipeline dispatcher upon the occurrence of a specified amount of input/output variance. The study should include meter accuracies with the intent to establish certain minimum standards regarding receipt and delivery variances within which liquid pipelines shall operate. Based upon the results of this study, the number of barrels-pes-hour variance allowable between the input and output of liquid petroleum pipelines should be included in 49 CFR 195.
3. The Federal Railroad Administration formulate and add to 49 CFR 195 the requirement that all pipeline companies formally notify appropriate Statc and local civil agencies of the route the pipelines follow in detail, the type of material they carty, and the lines of communication to be used in an emergency.
4. The Federal Railroad Administration incorporate by reference in 49 CFR 195.422. Pipeline Repairs, the American Petrcleum Institutc Pctrolcum Safety Data Sheet - Repairs to Crude Oil, Liquefied Petroleum Gas, and Products Pipelines. PSD 2200 - June, 1964.
5. The Colonial Pipeline Company provide maps of the pipeline route in sufficient detail to establish clearly the system location with regard to the various affected
civil agencies and residents along the righ: of-way. These maps should be kept current by the notation of pipeline additions or route changes as required. Specifically recommended to receive this information are fire departments, both civil and volunteet; State, county, and local police departments; departments of water resources; and any agency concerned with hazardous materials.
6. The Colonial Pipeline Company meet with appropriate Stare safety agencies to coordinate safe working rules and regulations and hold periodic pipeline safety meetings with fire departments and other interested agencies, to familarize their personnel with basic pipeline operations. materials pumped, hazards encountered. and the procedures to be followed when encountering pipeline leaks or other emergencies.
7. The Colonial Pipeline Company cumpose a formal, indepth manual or procedure depicting the step-by-sep method of handling petroleum spills. combating fires. notifying the various gencies. and the guidance of contractors crews in safe working procedures. Incorporate in this manual the American Petroleum Irstitute Petioleum Safery Data Sheet. PSD 2200 . Junc 1964, as a minimum so as to comply fully with the Federal regulation 49 CFR 195.422. A list of hospitals and fres aid units, complece with addresses and telephose numbers. should be included.
8. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1972

The following are the six pipeline accident reports and special studies published during CY-1972.

-PSS-72-1	Special Study - A Systematic Approach to Pipeline Safety
-PAR-72-1	Pipeline Accident Report - Phillips Pipe Line Company, Propane Gas Explosion, Franklin County, Missouri, December 9, 1970
-PAR-72-2	Pipeline Accident Report - Equitable Gas Company, Natural Gas Distribution System, Pittsburgh, Penn., November 17, 1971
-PAR-72-3	Pipeline Accident Report - Lone Star Gas Co., North Richland Hills, Texas, October 4, 1971
-PAR-72-4	Pipeline Accident Report - Washington Gas Light Co., Natural Gas Explosion at Annandale, VA., March 24, 1972.
-PAR-72-5	Pipeline Accident Report - Lone Star Gas Co., Fort Worth, Texas, October 4, 1971

This study discusses the need for and the benefits to be obtained by using system safety techniques in the pipeline industry. Pipeline systems have the greatest potential of any surface mode of transportation for benefiting from a systematic approach to safety techniques. This is because pipelines are definable as engineering systems and hazards may be identified and risks defined to a greater degree than other modes.

Past pipeline accidents are reviewed and it is pointed out that hazard analysis prior to the accidents would have identified problems which eventually resulted in accidents.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement.

TECHNICAL REPORT STANDARD TITLE PAGE

NTSB Form 1765.2 (11/70)

VI. CONCLUSIONS

By utilizing the systematic approach to safety, pipeline accidents can be predieted and analyzed before they occur. They can then be prevented by taking the action necessary to eliminate or control the hazards which lead to accidents. Systems analysis methods will identify possible hazards. Risks will not be assumed unknowingly. Those risks which are assumed will be those that have been identified, and in which a management decision has been made to accept them. This approach avoids crises by foreseeing them.

The benefits to be derived from the above approach go far beyond the prevention of an accident. The resourees allocated for system safety are well spent. In addition to the large sums needed to settle accident claims, make repairs to the system, and restore the environment, consideration must be given to the value of the operating company's reputation, image, and future business potential. One accident that could have been avoided can cost many times the price of an effective analysis cffort.

A number of recent accidents investigated by the Safety Board reveal the existence of hazards that were activated into accidents. System safety analysis would have made these hazards known and given management a chance to correct then before the accident occurred.

The systematic approach can be carried through for the total uperational life of a pipeline sestem since it can be used during the design stage and in the operation and maintenance of wisting witems.

VII. RECOMMIENIAATIONS

The National Tramsportatoon Safery Board recommends that:

1. The American Societ! of Mechanical Engineors Gas Piping Standards Committe dewelop guidelines for the use of systems .malesis by gas distriburion and gas tramsmission pipiline uperators. These guidelines should serve . smilar function for gas pipeline systems as the

Military Standard. Requirements for System Silfety Irogram for Sistems and Associated Subsivitcm: alld liguipment (MIL-STD-882), dues for military systems. These guidelines should cover the full life cycle of a gas pipeline system and be applicable to the design of new pipclinces as well as to the operation and maintenance of existing pipelines. This work should be undertaken with the cooperation of the American (ias Association.
2. Each gas pipcline operator review his "peration with a view toward instituting a more sistematic and authoritative approach to understanding and controlling hazards, not only for new projucts, but for day-to-day operations and maintenance. The guidelines developed by the (ias Piping Standards Committee should be used (1) wet ip individual system sifety programs.
3. The American Petroleum Institute develop guidelines for the use of system safety by liquid pipeline operaturs. These guidelines should serve a similar function for liquid pipeline systems as the Military Standard. Requirements for System Safcty Irogram for Systems and Associated Subsystems and I:quipme'nt (MIL-STI)-882), does for military systems. These guidelines should cover the full life cycle of licuid pipeline systems. and be applicable to the design of new pipelines as well as to the operation and maintenance of existing pipelines. This work should be undertaken with the cooperation of the American National Standards Institute Section Committee for Liquid Petrolcum Transportation Piping Systems (ANSI-B.31.4).
4. Each liquid pipeline operator review his individual operations with a view toward instituting a more systematio and authoritative approach to understanding and controlling hazards, not only for new projects, but for day-to-day operation and maintenance. The guidelines developed by the Anerican Petrolewn Institute should be used to set up individual system safety programs.
5. The Office of Pipeline Safcty of the Department of Transportation encourage the use of the systematic approuch to safety by gas pipeline operators. in general. especially in the ir compliance with Title 49. Paragraph 192.605. Essomtials of ()peratinge and Maintemance Man, of the Minimum Federal Safety Standards - Transportation of Natural and Other Gas by Pipeline.
6. The Federal Railroad Administration encourage the use of the systematic approach to safety by liquid pipeline operators, in general. but especially in their complying with Paragraph 195.402 of the Title 49. Transportation of Liquids by Pipeline. This paragraph requires written procedures for ensuring safe operation and maintenance of pipeline systems during normal operations and during abnormal and emergency situations.

NTSB-PAR-72-1 PIPELINE ACCIDENT REPORT - PHILLIPS PIPE LINE CO. PROPANE GAS EXPLOSION, FRANKLIN COUNTY, MISSOURI, DECEMBER 9, 1970

On December 9, 1970, a rupture occurred in a 8 -inch uncoated pipeline in a rural area of Franklin County, Missouri, which released 4,538 barrels of propane. The propane-air-mixture exploded with a force equivalent to 50 tons of TNT, destroying all buildings at the blast origin, extensively damaging 13 homes within a 2 -mile radius, and snapping tyees and telephone poles in the area.

The NTSB determined that the probable cause of the accident was the rupture of an insufficiently bonded longitudinal weld which had been further weakened by internal corrosion. Contributing to the rupture was a pump station which shut down and produced a higher pressure than the pipeline had been subjected to in the recent past.

R \& D CONSIDERATIONS

1) Conduct a study concerning minimum valve spacing standards and the use of remotely operated valves and check valves on all liquified petroleum pipelines.
2) Conduct a study of of the various current practices in the handing, containing, and disposing of liquified petroleum products resulting from pipeline failures. This study should include external factors such as weather conditions, topography, and population density in the vicinity of the leak.
3) Continue experimental work in testing and developing a tool to detect longitudinal weld defects and thin wall pipe conditions caused by corrosion.

TECHNICAL REPORT STANDARD TITLE PAGE

BrSB Form 1765.2 (11/70)

The National Transportation Safery Board concludes that:

1. The Phillips Pipe Line Company's "A" line from Borger, Texas, to East St. Louis, Illinois, in its physical condition was not safe for the transport of liquefied petroleum gas under the operating pressure in effect at the time of the rupture.
2. The pressure on the failed section of pipe at the time of rupture was higher than that pipe had been subjected to in the recent past.
3. After this accident, Phillips reduced the maximum allowable discharge pressures on this system. The National Transportation Safety Board, in its Safety Recommendation P-71-6 issued on April 27, 1971, recommended a further reduction in pressure. If these pressure reductions had been effected prior to this accident, it would not have occurred at this location.
4. During construction, the longitudinal welds were positioned in the pipeline ditch in a random manner; some were located on the bottom, some on the sides, and some on the top half of the pipe. For about the first 17 years of operation, free water and productabsorbed water were pumped through this pipeline. Some of this water initiated a corrosion attack on the bottom of this pipe, and on those longitudinal welds lying on the bottom.
5. This 40 -year old bare pipeline, which contains many imperfectly made longitudinal welds and has internal corrosion problems, has had numerous longitudinal weld failures at various pressures and at various locations along its length. In the 6-year period from 1965 to 1970 inclusive, 12 longitudinal weld failures have occurred, which released more than 39,000 barrels ($1,638,000$ gallons) of liquefied petroleum products.
6. There remain in this pipeline system an unknown number of faulty longitu-
dinal welds at unknown locations, and in varying stages of deterioration. A newly developed tool has been used by Phillips in an attempt to detect these defective welds. This tool is still in the experimental stage.
7. The delay in shutting down the pipeline and reducing the amount of escaping propane was due to (a) the excessive amount of time taken to shut down the initial pump station on this system; (b) the fear of rupturing the line again at another location by a rapid shutdown of a pump station, creating a pressure surge; and (c) lack of any automatically or remotely operated main line valves to close off and isolate the failed section rapidly.
8. Liquefied petroleum gases are more hazardous than crude oils or other refined products normally transported by pipelines. Little can be done to contain, dispose of, or dissipate the resulting flammable mixture after it leaks from a pipeline. Statistics for the 3 years of 1968, 1969, and 1970 show that LPG leaks represented only 9 percent of the total accidents, but they caused 71 percent of the total deaths, 65 percent of the personal injuries, and 26 percent of the property damage during this same period.
9. The greater hazards inherent in the transportation of LPG by pipeline require a higher degree of safety controls than other petroleum products. Currently there is no major distinction in the regulations.
10. If this type of accident, which consumed over 4,538 barrels of propane and detonated with a force equivalent to 100,000 pounds of TNT, had occurred in a more densely populated area, there would have been numerous fatalities, more injuries, and greater damage.
11. The alertness of a local resident, who heard the roar of escaping propane, and
his determination to warn his neighbors, prevented an accident of even more serious proportions.
12. The volunteer fire companies, the local Sheriff's officers, and the Missouri State Police combined effectively to extinguish the fire, aid and assist the displaced people, and restore and maintain order.

V. PROBABLE CAUSE

The National Transportation Safety Board determines that the probable cause of the accident was the rupture of an insufficiently bonded longitudinal weld, which had been further weakened by internal corrosion. Contributing to the rupture was a pump station which shut down and produced a higher pressure on the failed pipeline section than it had been subjected to during recent operations.

The explosion and fire were caused by the ignition of the released propane which had been confined in a concrete block building. The explosion inside the building initiated a shock wave which caused the detonation of the entire unconfined propane-air cloud.

Contributing to the intensity of the explosion and fire were the weather inversion present at the time, which acted as a lid on the detonation and helped to deflect the resultant forces earthward, the delay in shutting down the pumping stations, and the amount of time taken to close the manually operated valves on either side of the split.

VI RECOMMENDATIONS

The National Transportation Safety Board recommends that:

1. The Federal Railroad Administration of the Department of Transportation:
(a) Review the proposals made by the Hazardous Materials Regulation Board in Docket No. HM-6A on April 18, 1969. Rulemaking should be undertaken to provide for more complete controls for the transportation by pipeline of liquefied petroleum gas. These regulations should include minimum standards for the design, construction, testing, operation, and maintenance of both new and existing pipelines.
(b) Initiate an amendment to the Code of Federal Regulations, Title 49, Section 195.218 Welding: Seam offset, to require longitudinal welds to be placed in the upper half of the pipe during construction. Similarly, that in repairs to a pipeline involving pipe replacement, a requirement be issued that the longitudinal welds of replacement pipe be positioned in the upper half.
(c) Conduct a study, in cooperation with sources of qualified pipeline expertise, concerning minimum valvespacing standards and the use of remotely operated valves, automatically operated valves, and check valves on all liquefied petroleum pipelines. As an adjunct to this, the Safety Board invites attention to a recommendation made in its special study of "Effects of Delay in Shutting Down Failed Pipeline Systems and Methods of Providing Rapid Shutdown." 8
(d) Undertake a study, in cooperation with sources of qualified pipeline expertise, of the various current practices in the handling, containing, and disposing of liquefied petroleum prolucts resulting from pipeline failures. This study should include such external factors as weather conditions, leak site topography and population density in the vicinty of the leak. Based upon the

[^0]results of this study, there should be formulated and added as an amendment to 49 CFR 195, minimum regulations regarding the handling of liquefied petroleum gas as a result of pipeline leaks.
2. The Phillips Pipe Line Company:
(a) Maintain as a maximum, the reduced pumping pressures recommended by the National Transportation Safety Board's Safety Recommendation P-71-6 issued April 27, 1971, which limits to 900 p.s.i.g. the maximum discharge pressures at each of the pump stations between Borger and East St. Louis, as well as Phillip's own pressure limitation of 900 p.s.i.g. on the four pump stations in the affected area; Syracuse, Jefferson City, Rosebud, and Villa Ridge. A 24-hour hydrostatic pressure test equal to 125 percent of the maximum anticipated pressure as specified in the CFR Title 49 Part 195 would be required before this line pressure could be again increased.
(b) Revise their pipeline operating procedures and initiate any equipment changes necessary to reduce substantially the time required to shut down the pump stations. Included in this review and revision should be explicit instructions to the dispatcher for the immediate emergency shutdown of all pump stations together with some means of practicing these procedures. (c) Institute main line valve changes or modifications needed to reduce substantially the amount of time required to completely block off and isolate a failed pipeline section. Consideration should be given to the use of automatically operated valves, remotely operated valves, or check valves installed at strategic locations on this pipeline. Special consideration should be given to the concentration of population-at-
risk along and adjacent to the pipeline right-of-way. The Safety Board invites Phillips attention to the section on the Public-at-Risk in the Safety Board's special study of "Effects of Delay in Shutting Down Failed Pipeline Systems and Methods of Providing Rapid Shutdown."
(d) Provide maps of their pipeline system in sufficient detail to establish clearly the system location with regard to the various affected civil agencies along the right-of-way. These maps should be kept current by the notations of pipeline additions or route changes as required. Specifically recommended to receive this information are the fire departments, both civil and volunteer, the state, county and local police departments, and other agencies concerned with hazardous materials.
(e) Establish 2 line of communication with the affected civil agencies and all residents along the pipeline right-ofway, by supplying a card or sticker with the names, addresses, and telephone numbers of pipeline personnel to be contacted during an emergency.
(f) Hold periodic meetings to include the local fire departments and other interested agencies, to inform further and educate the attending personnel as to basic pipeline operations, and materials pumped, hazards encountered, and procedures to follow during LPG leaks. (g) Continue with the experimental work in cooperation with other qualified pipeline groups in testing and developing a tool to detect longitudinal weld defects and thin wall pipe caused by corrosion. Based on the findings, the methods of operation should be incorporated in the pipeline industry standards, as an additional tool for the detection of in-place line pipe flaws, but not as a substitute for hydrostatic testing.

On November 17, 1971, while revamping a regulator station in Pittsburgh, Penn., gas company employees were replacing a valve on the low-pressure side of a regulator in an underground vault. The shutoff valve on the high-pressure side was turned off but there was no valve on the low-pressure side to stop the flow of gas. Rags were stuffed into the line in an effort to cut off the flow of gas. Two men were overcome by gas and four others were overcome attempting to rescue the first two. All six men died of asphyxiation and three others were injured.

The NTSB determined that the probable cause of death by asphyxiation was the failure to shut off completely the flow of gas. Contributing to the aeciddnt was the failure to use respirators, air blowers, or vapor detectors; and the lack of written procedures for revamping the regulator station.
$R \& D$ CONSIDERATIONS

No $R \& D$ requirement

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. NTSB-PAR-72-2	2.Government Accession No.	3.Recipient's Catalog No.	
4. Title and Subtitle Pipeline Accident Report Equitable Gas Company, Natural Gas Distribution System, Pittsburgh, Pennsylvania, November 17, 1971		$\begin{aligned} & \text { 5. Report Date } \\ & \text { May 25, } 1972 \end{aligned}$	
		6. Performing Organization Code	
7. Author (s)		B. Performing Organization Report No.	
9. Performing Organization Name and Address Bureau of Surface Transportation Safety National Iransportation Safety Board Washington, D. C. 20591		10. Work Unit No.	
		II. Contract or Grant No.	
		13. Type of Report and Perlod Covered Pipeline Accident Report November 17, 1971	
12.Sponsoring Agency Name and Address NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20591			
		14.Sponsoring Agency Code	
15.Supplementary Notes			
16.Abstract On November 17, 1971, while in the process of revamping a regulator station, employees of the Equitable Gas Company were attempting to replace a valve on the low-pressure side of a regulator in a vault without first stopping the flow of gas. Two men working in the vault were overcome by gas leaking into the vault. Four others also were overcome attempting to rescue the first two. All six men died of asphyxiation. Three other men also were injured. The National Transportation Safety Board determines that the probable cause of death by asphyxiation of the first two men was the inhalation of natural gas released into the vault in which they were working, when an attempt was made to change a valve in the vault without first stopping the flow of gas. Four other workmen also died of asphyxiation while they were attempting to rescue the first two. Contributing to the accident were the lack of: (1) use by any of the workmen of respirators, air blowers, or vapor detectors; (2) any written procedures for accomplishing the regulator station revamping; and (3) proper personnel training.			
17. Key Words Pipeline accid asphyxiation, distributi pipeline safety standard safety equipment, respir	ent, natural gas, on system, "on the fly," s, employee training, ators, working in vaults	18.Distribution Statement Released to public Unlimited distribution	
19. Security Classification (of this report) UNCLASSIFIED	20. Security Classification (of this page) UNCLASSIFIED	21.No. of Pages 29	22.Price

NTSB FOrm 1765.2 (11/70)

IV. CONCLUSIONS

1. In its proposed revamping of regulator station R.B.-26, Equitable was not in compliance with the intent of paragraph $192.199(\mathrm{~g})$ of the Minimum Federal Safety Standards for the Transportation of Natural and Other Gas by Pipeline. This paragraph concerns the design and installation of pressure-relief and limiting devices so that the operation of both will not be affected by any single incident.
2. The Federal regulation on regulator design, 49 CFR $192.199(\mathrm{~g})$ is vague and does not clearly convey the intent, which is to require separation, either by distance, barrier or separate housing, of the pressurelimiting device and the overpressure protection device.
3. Equitable's "Standard Safety Practices" were adequate to prevent the accident, but were not followed by its employees.
4. The equipment required to comply with Equitable's standards, such as masks and ventilators, was not available at the job site.
5. Equitable's training procedures were inadequate in that they did not provide the employees involved in this accident with the necessary knowledge of how to work safely in and around gas facilities.
6. The decision to replace the downstream valve in the vault without stopping the flow of gas was highly irregular, not condoned by Equitable, and was made in the interest of saving time.
7. There was no need to replace the downstream valve in the vault to accomplish the revamping of the regulator station to house both the regulator and the relief device. A field inspection of the regulator station as it existed prior to redesign would have shown that the dimensions on the sketch were incorrect, and that replacing the valve would have provided $21 / 4$ extra inches of space instead of the planned $71 / 4$ inches.
8. Equitable had no written procedures for the revamping of regulator station R.B.-26. Preparation of such procedures would have pointed out the problem of shutting off the downstream flow of gas and allowed for adequate planning to complete the job in a safe manner.
9. After the accident, Equitable made changes in its operating procedures to improve safety. If these changes had been made prior to the accident, it would have been prevented.
10. The practices of the American Telephone and Telegraph Company for working in vaults are effective in preventing accidents related to gas leakage in underground structures.

V. PROBABLE CAUSE

The National Transportation Safety Board determines that the probable cause of death by asphyxiation of the first two men was the inhalation of natural gas released into the vault in which they were working, when an attempt was made to change a valve in the vault without first stopping the flow of gas. Four other workmen also died of asphyxiation while they were attempting to rescue the first two. Contributing to the accident were the lack of: (1) use by any of the workmen of respirators, air blowers or vapor detectors; (2) any written procedures for accomplishing the regulator station revamping; and (3) proper personnel training.

VI. RECOMMENDATIONS

The National Transportation Safety Board recommends that:

1. The Office of Pipeline Safety of the Department of Transportation clarify the language of 49 CFR $192.199(\mathrm{~g})$ to state clearly that the intent of the regulation is to separate pressure-limiting devices and overpressure-protection devices by distance, barrier, or separate housing.
2. The American Society of Mechanical Engineers Gas Piping Standards Committee:
(a) Include in its "Guide for Gas Transmission and Distribution Piping Systems" procedures for testing the atmosphere of underground structures prior to entering and while working in these structures. The practices of the American Telephone and Telegraph Company should be considered during the establishment of these guidelines.
(b) Develop guidelines that pipeline operators can use in their training programs which will help employees understand the characteristics of natural gas, its effects on the human body, and how to act properly while in its presence.
3. The Equitable Gas Company:
(a) Distribute its "Standard Safety Practices" manual to all employees affected by its contents.
(b) Include programs in its training that will insure that all employees are familiar with the contents of its "Standard Safety Practices" manual.
(c) Include in its training programs a course on understanding the characteristics of natural gas, its effects on the human body, and the correct procedures to be used in its presence.
(d) Prepare written procedures for each planned shutdown of a portion of its pipeline system, or the installation or replacement of portions of the system which require stopping, or initiating the flow of gas.
(e) Conduct a field inspection of existing facilities it plans to upgrade, replace, revamp, relocate, or change, prior to commencing the redesign.
(f) Develop standards for the design of typical regulator station installations for various types of service.

On October 4, 1971, a small explosion and intense fire completely destroyed a house in North Richland Hills, Texas. The accident caused the death of three members of the family and severe injuries to another. The fire department extinguished the fire and the gas company searched for a gas leak. While the search was still going on, another explosion and fire occurred in the attached garage of an adjacant residence which caused the death of one occupant and extensive damage to the garage. The neighborhood was then evacuated. The major leak was found at the junction of the 6 -inch welded steel gas main and a $1-1 / 4$-inch galvanized steel service line. The 13 -year-old galvanized service connection had become brittle in the thread cut zone due to hydrogenation (caused by galvanic action). The dense clay soil had exerted stresses on this pipe through the years every time rain saturated the soil and caused it to swell.

The NTSB determined that the probable cause of the explosions and fires was the accumulation of natural gas which had leaked from a broken service-line connection with a 6-inch gas main (coated, wrapped, and cathodically protected), and had migrated up and under the concrete slabs of both homes. Contributing to the second explosion and fire was the length of time taken by the gas company to find the leak and their failure to shut off the gas main in order to isolate the affected area.

R \& D CONSIDERATIONS

1) Conduct a study of the stress effects of various types of soils and backfull on service line-gas main connections.

\begin{tabular}{|c|c|c|}
\hline \& 2. Coverrment dceess ton tho. \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. Title and subtiste \\
Phellim Aecident Report - Lone star Ges Compary, Worth Eichlend Eille, Texas, Dctober 4, 1971.
\end{tabular}}} \& 5.heport dete november 8, 1972 \\
\hline \& \& 6.Performing organtzation Code \\
\hline \multicolumn{2}{|l|}{Huthor (8)} \& G. Performing organlzation Report Mo. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9. Ferforaing organlzation Name and Addrass Mational trameportation Safety Board Durceu of Surface Transportacion Safety Wachington, D. C. 20591}} \& Do. Work Unit Mo. \\
\hline \& \& W1.Contract or Grant Mo. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
12. Sponsoring Agency Mame and Address \\
MATIOMAL TRANSPORTATION SAFETY BOARD Meshington, D. C. 20591
\end{tabular}}} \& \[
\begin{aligned}
\& \text { T3. Type of heport and } \\
\& \text { Perlod Covered } \\
\& \text { mipeling Accinest Rapory } \\
\& \text { October 4, } 1971
\end{aligned}
\] \\
\hline \& \& Th.Sponsoring Agency Code \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
15. Supplementary Notes \\
This report contains Pipeline Safety Recoumendations P-72-34 thru P-72-39.
\end{tabular}}} \\
\hline \& \& \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
16.Abstract \\
Lt about \(4: 45\) a.m., on October 4, 1971, a emall explosion and intence fire com pletely destroyed a house at 8300 Jerrie Jo Deive in North Richland Bille, Texas. This aceident caused the deathe of a father and his tro sons and the soverre burning of their mother. Alrost 3 hours later, the naighboring house at 8304 Jerrie Jo experienced an explosion and fire in the garage which caused the death of the woman occupant and extensive damage to the garage. \\
The Mational Tranoportation Safety Board deterndaes that the probable cause of the axplosions and fires was the ignition of an accumulation of matural gat vaich had leiked from a broken service-line comection with a b-inch gas maln and had adgrated up and under the concrete slabe of both houses. \\
The leagth of time taken by gas company parconnal to find the lak and thair fallure to close the three valvas on the gas main to leolate the affected ares cosp tributed to the second explosion and fire. \\
The dalay in the decision to evecuate the houses until after the second exploslon and fire was cansed by leck of liaison and cooperation between the gas company and the fire department.
\end{tabular}} \\
\hline \begin{tabular}{l}
17.Key Words \\
Watusal gee loak; Lone 8t Hils (Fort Worth), Teces comection; migration gas tire depertment lialeon;
\end{tabular} \& Gas Compars: North Richland corvice-line - gas min conerete foundation elab; actric anteh ignition. \& \begin{tabular}{l}
T6.01strlbution statement \\
Released to public \\
Diatribution umlindted
\end{tabular} \\
\hline \[
\begin{gathered}
\text { TS. Securlity Classification } \\
\text { (of ehis roport) } \\
\text { unclassifIED }
\end{gathered}
\] \& 20. Security Classifleation (of this pege) LICLASSIFIED \& 21. Wo. of Pages

22

\hline
\end{tabular}

whit Fox 1365.2 (12/70)

IV. CONCLUSiONS

The National Transportation Safety Board concludes that:

1. The zinc conting on the service line combined with sir and moisture to cause a dissimilar meral condition and to set up a givanic action which eletmately produced the hydrogenacion brittle, faceted cleavage of the pipe.
2. The ervice line, weakened after repeated soil suresses over a period of years and embrittled by hydragenation, finally fiiled due to the forces exerted on it by the swelling clay, which was saturated by recent heavy rains.
3. The explosion and fre in the house at 8300 Jerrie Jo Drive were due to matural gas leaking at 20 to 25 p.sig. from a break at the junction of the ges main and service line.
4. The explosion and fire in the house at 8304 Jerric Jo Drive, which occurred almost 3 bours later, were due to nerural gas still leaking at 20 to 25 pesig. from the break at the junction of the gas main and service line and migrating in a well-defined path up under the concrete driveway and garage slab.
5. Lone Star Gas Company employees and fire department persoisel did not escablish proper linison or communica tion. Thus, the firemen were unaware of the leaking gas.
6. This lack of communication resulted in the late evacuation (after the second explosion) of the area residents still unaffected.
7. The fact that gas company employees dif not close the three valves on the ges main to isolate che affected section conoributed to the amount of gas released, and to the severity of the secoed explosion.

V. PROBABLE CAUse

The National Transportation Safery Boand determines that the probable cause of the explosions and fires was the grition of an socumulation of matural gas which had leaked from a broken serviceline connection with a Giach as main and had migrated up and ender the concrete slabs of both houses.

The length of time taken by gas company personnel to find the leak and their fillure to close the three valves of the gas main to isolase the affected area contributed to the second explosion and fire.

The delay in the decision to evacuate the houses until after the second explosion and fire was caused by lack of liaison and cooperation between the ges company and the fire departmeat.

V. RECOMMENDATIONS

The National Transportation Safety Board recommends that:

1. The Office of Pipeline Safety
(a) Amend 49 CFR 192 to include a section based on a review of the suitability of threaded galvanized pipe, or pipe coated with other dissimilar metals, for the transportasion of natural and other gos. (Recommendstion No. P-72-34)
(b) Amend 49 CFR 192.615 to include an explicit requirement that pipeline operators nocify and coordinate their activities with local fire and police officials when gas leaks create hazardous conditions (Recommendation No. P-72-35)
2. The American Society of Mechanical Engineers Gas Piping Standards Committee:

Conduct, in conjunction with the American Gas Amociation, a study of the stress effects of various types of soils and backfill on service linegos main connections. As a reult of this study, guidelines should be issued for installing underground gat-piping systems. (Recommendation No. P-72-36)
3. The Lone Star Gar Company:
(a) Undertake a program aceeptable to the Raitroad Comminsion of the State of Texas, to inspect, on a random-ample basis, the eervice line - gas main connections similar to those at the sccident site, to determine their current condition and the exiscing tress on the piping. The results of this progrom will determine the action to be taken on other inscallations in the Lone Star system. Copies of these test resules should be forwarded to the Railroad Comminsion of the State of Texas
and the Office of Fipeline Safery of the Department of Transportation. (Recommendation No. P-72-37)
(b) Eseablish a line of communications and hald periodic meetinge with local fire departments and ocher interexted agencies to inform them of gs company emergency procedures and maintenance operacions. (Recommendation No. R-72-38)
(c) Notify and coordinate ins activicies with local fire and police officins when sas leaks creare harardons conditions. (Recommendation No. P-72-39)

> NTSB-PAR-72-4 PIPELINE ACCIDENT REPORT- WASHINGTON GAS LIGHT CO.,
> NATURAL GAS EXPLOSION AT ANNANDALE, VA., MARCH 24, 1972

On March 24, 1972, in Annandale, Va., a contractor's backhoe snagged a 2-inch wrapped-steel gas main, operating at 22 psig , and pulled it out of a compression coupling 22 feet away. Gas company personnel arrived on the scene 40 minutes later and started to search for the reported leak. The gas was not shut off and the nearby homes were not checked for the presence of gas. About 20 minutes later, three houses exploded, killing three persons and injuring one gas company workman.

Contributing to the accident was the delay of the gas company in shutting off the gas, the failure to check for gas in the houses, and the failure to notify police and fire officials. Also contributing were the failure of residents to quickly report the oder of gas, and the failure of the county to supply the contractor with accurate gas line location maps which had been provided by the gas company.

R\&D CONSIDERATIONS

1) Research is needed to study the flow of natural gas through various house foundation wall materials and types of construction. The project whould also include effective methods of sealing the space around underground utility lines where they enter a building. The effects of aging, settlement, and exposure to water should also be considered.

TECHMICAL REPORT STAMAAND TITLE PASE

CMPM-AP-7	werriment accession Vo.	\%14 it ${ }^{\text {j }}$
		ort bete 1972
		Performine Organlzation Code
7. Zuthor(s)		..Performing Orgonlzetion Report Mo.
3. Ferforming organlzation kime and Mddress Metional Traneportation Bafety Board Iureau of surfece transportation safoty Wachington, D. C. 20591		W.Work Unte No
		ontract or Grant Mo
		13.Type of heport and Period Covered
T2.Sponsorting Agency Name and Address MATIONAL TRANSPORTATION SAFETY COARD Mashington, D. C. 20591		PIPERETS ACRIDETT REPRT March 24, 1972
T5. Supplomentary Wotes This report contains Plpeline Safety Recommendation P-72-40 thru P-72-62.		
T6.Abstract On Merch 24, 1972, in the Ampandale section of Fairfex County, Va., a contractor's backboe anaged a 2-1nch oteel gas min, operatint at 22 p.s.i.s., and pulled the min out of a compresilon coupling 22 feat away. Gas company personnel arrived on the ecana about 40 dmutea later and etarted to search for the break. The gas vas mot shut off and the nearby housea vare not chocked for the presence of gas. About 20 minutes after the gas company cren had arrived, a house, 240 feet avay from tha polnt at which the line was anagged, exploded. Within the naxt fow admutes, two other houses axploded and burned. is a reault of the accident, three pereone died and one van injured; two houses vere destroyed and a chird was badly damaged; and \$153,000 worth of property vas dapased. The Mationel Transportation Safety Board deterndnas that the cauee of the exploo sions in the three houses van the Lantion of ges that leaked from a min damaged by a contractor ' beekhoe. Contributids to the aceident were the delay by the sas company in shutting off the flow of leaking gas, the fallure to check for gas in houses, and the fallure to motify police and fire officials. Aleo contributing vere the fallure of the area realdents to report the presence of leaking gas in thair houses, and the fallure of the county to oupply the contractor sith the sccurate ges gain location which had been provided by the sae coppany.		
17.Key Words Plpeline secident, matural gas leakagh, pulled min, plpolise eafety standards, public maremest of gas cmargerclee, welve oparation, gat migration through colls.		TB. Ofstribution Statement Released to problic; diatribution unlisited.
Th. Securlity Claselfication (of shis report) unclassified	20. Security Classification (of thls pege) UMCLASSIFIED	21. Mo. of Tages 40 22.price 40.0964 .95

CONCLUSIONS

The National Transportation Safery Bond concludes that:

1. Pipeline operators are sequired by Fedard repulacioes to have emergency plass: however, the regulations do nor control or epecify problems or eaneryency menasures to be cover.d ie such plana
2. The plas "or the sewer project provided to the coscractor by the county dhowed the 2 . inch pipelime that was subsequently hit to be 5 Geet west of its actul location. A correct locasion inchuding die depth of the line, was povided to the county by WGL prior to the letaing of die conarace.
3. The marning given to the county by WGL dint die comaractor would have to exercise exureme caution to prevent damage to the gas line was not pasmed alony to the contractor.
4. The gas maims to be encountered during dis project were not discussed at the county's precomstruction meeting with the conaractor.
5. The comeractor and his foreman at the job sice were aware that dhe gas main was in the pach of tive sewer replacement being undertaiken. They were not amare, however, whe ther che gas tine passed above of below the 42 -inch sewer teing remoned
a. The lacthoe operator was not being puided adegastely a de time chat be pulled the fis main wich she beckloce. Neither the foreman mor odier mortmen were observing condicions in tive encaration to adrise the operator of the prescmer of odier factivies.
6. The worlload of the WGL dispatcher was sach chat he was mable adequately to direct and coordinase de activities of WGL's field forces to enpond promply so the report of the pulled -2
7. MGL's progran to educate its customers ande gevet public to recopnize gas emerpacies we, not effective, in chat it did sot reach Ae generd prolic or adequately point out the punile harert or consequences of nor report. Lyse chors.
8. Since -3 maserved emanating from te aract between she Hackeop and concreve at die cand hain, the WGL personned oa the scene piot so de explotions hould have realized chas
all of the gas was nor venting to the atmosphere but was traveling through the ground.
9. Even though the line was separated, the pis continued to flow through the separation and into the main that supplied the homes in Magdalene Court. The sources of ignition are un known but could have teen gas-stove flames or pilot lighes.
10. Tesks performed by the NBS indicate chat the gas which leaked from the separated coupling flowed rapidly through rock-filled urility trenches to the frone walls of 4909 and 4911 , and the front and side walls of 4907 Magdalene Courr. The gas entered the buildinge chrough the mortar and asphalt-casted concrete blocks and/ or through spaces where utility piping entered che buildings.
11. WGL's personnel did nor follow their operating instruction, Investigation of Gas Leaks, which required them to deternine whether gas is entering any structure before attempting to locate the source of leakige. Although this instruction concerns leak complaints and is not for large filures of this nature, no additional instructions were msued to its em . ployees.
12. The practice by WGL of restricting the operation of valves to pressure division personnel increased the time taken to shut off the flow of gas.
13. The marding of valves in the field would allow them to be positively identified in emerBency situations.
'5. The methods used by WGL to classify the leak reported by telephone by the resident of 4909 Magdelene Court was inadequate and incomplete, in that the true hazard that existed was not determined.
14. Although 96 percent of the constructioncaused damages that occur on WGL distribution system affect lines 2 -inch in size or smaller, the equipment so squeeze off lines of this sise was not readily avilable in the field.

V. PROMARLE CAUSE

The National Transportacion Safery Boand determines that the cause of the explosions in
te there homes mas the inizion of gen that theled froe a min bemaged by a concractor's texther.

Comerturing to de exidear were de delay If the gee company in churting off the flow of beling ger the talure so check for ges in louser, ald ite fiture to notify police and fire cficioith Abo conmitenting were de fialure of te mes reidema so repor the odor of ges in their bousen ad the filture of the county to epply de comeractor widh the accurate gas main bocation elich had been provided by dre gas comply.

V. RECOMMENOMTIONS

The Rexionl Trmesportacion Safery Board reconemende the:
2. The Ofice of Ripelime Safety
(a) Anead 49 CFR 192 so require consite idencification of all valves on bigh-pressare distribution systerns - fich may be mecesary for the safe cparation of the system. (Recommendxtion Na. P.72-40)
(1) Aned 49 CFR 192 to require that each pipeline operator prepare preplaned sherdown procedures so tan any section of a high-pressure distritution syyem an be shut Sown in an cergency. (Recommendrion Na. P-72-41)
(c) Amead 49 CFR 192 to require that ach operitor maintain a log which shows the receip and handling of each leak or emergency report seceived Information concerning the sisce that the report was first noneined, tha a crew was first dispeched to the scenc, dhat such a esew arived, and char de condition -an comidered safe should be inchaled In aldicion, each pipeline eperator should be required to endyue his performance in respond-
ing to portenk emarpencias and reports. Both the logs and the andy. sis should be made available to Seace agencies and die Office of Pipeline Safery. (Recommendation Na. P. 72 42)
(d) Amead 49 CFR 192 to require that each pipeline operator have on duty a sufficient mumber of dispatchine personnel to effectively coordinate emergency sicuations A study may be required to determine the relationship between rarious conditions and de number of dispatchers necessary. (Recommendation Na P-72-43)
(c) Amend 49 CFR 192.615 to include an explicit requirement that each pipeline operator motify and coordinate his activities with local fire and police officials when gas leaks create hazardous conditions." (Recommendation No. P-72-44)
2. The American Public Works Association develop guidelines for preconstruction meetiogs which should include merhods of preweating damage to underground ucilities to the encountered during the proposed construction work. Such preconstruction meetirzs should be attended by all operators whose facilities are involved. (Recommendation No. P-72-45)
3. The American Society of Mechanical Engineers Gas Piping Standards Commirree
(a) Recommend methods of numbering or marking values in the field 80 that they can be readily and positively identified. (Recommendation No. P. 72-46)
(b) Develop guidelines to be used by pipeline operators in establishing preplanned sectionalizing programs to shut down any section of main in an

[^1]emerjency. IRecommendation No. P-72 471
(c) Dewelop guidelines to assist pipeline operators in preparias their emerseacy plans. These plans should indscate she action to be taken by dive fira ges company employee arriving at the scene of an emergency. (Recommendation Na, P.72.48)
(d) Develop guidelines to ascist pipeline operators in educating customers and de remeral public in the proper action to ahe if gas leaks are derected (Recommendarion No. P.72-49)
(c) Dewelop guidelines in cooperation with the National Fire Piotection Ansociation 20 assist pipeline opera. tors in determining the conditions under which local fire and police officiak should be moxified. (Recom. meadation No. P.72-50)
(1) Develop suidelines for classifying and responding to leaks reported by the prublic. (Recommendation No. P-72-51)
4. The National Science Foundation, the Office of Emergency Preparedness, and the Nacional Bureas of Standards initiate a research project. under their cooperatire program. -Buiding Practices for Disaster Mitigation." so stedy dhe flow of antural gas through various basersent wrall macerials and types of construc. twon. This project should also include effective mechods of sealing the space around underpound urilury lines where chey enter a buidding. The effects of agne setilement, and ex posure to wacer sould be considered. (Recommendation Mo. P.72-52;
5. The Asmerican Gas Asmocistion study the Low of pas through various construction fill malua and recommend merhods and sypes of fill so the used the masallation oi undergound wiley hare. ' Recommendation No. P-72-53)
6. The Wavengerton Ga Light Company
(a) Encend, in cooperation with ocher wiluy compames and goveramental egencies, the Miss Utility program to receive reports of proposed excavasion work in the entire Wachington metropolitan area. (Recommendathon Nu. P-72.54)
(b) Develop a sectionalizing program of iss high-pressure distrihution system so that preplanned procedures are available to isolate any section of its system in an emergency. (Recom. mendation No. P-72-55)
(c) Train and equip all appropriate radio-equipped field personnel to locate and operate main line valves under the direction of knowledge. able office personnel. (Recommendation No. P.72.56)
(d, Expand its customer education pro gram so that its customers and the general public can be made awar: of the proper action to take if gas leahs are detected. (Recommendation ifu P.72-57)
(e) Maintain a leak log which will give appropriate information relative to all aspects of receiving and respond. ing to reported leaks This informacion should be analyzed periodically to provide information which will readily point out problem areas in WGL's response. (Recommendation No. P-72-58)
(f) Indentify all values in the field (1) permit posttive identafication. (Recommendation No. P.72-59.
(g) Realgn its dispatching facilities so that one dispatcher can contact all field persunnel capable of responding to an emergency when such a situa tion is encountered. (Recommenda tion No. P-72-60)
(h) Coordinate the activities of the transmission and distribution department dispatcher with the customer ap pliance lispacher so chat an Fpplinace anviceman is diupetched to le scexe of ayy reported leak in the cistriterion system. (Recommends. Ion Na R-72-61)
(i) Provide all maintenance foremen with the equipment mecemary to qquerse off 2 -isch and smaller gas lines. (Recommendation No. P-72-62)

NTSB-PAR-72-5 PIPELINE ACCIDENT REPORT- LONE STAR GAS COMPANY, FORT WORTH,TEXAS, OCTOBER 4, 1971

On October 4, 1971, a violent explosion blew out the roof and four walls of a house in Fort Worth, Texas, when a gas stove was lit, destroying the house and severly injuring its occupant.

After the fire department extinguished the blaze, the gas company employees initiated a leak search, and discovered five ruptures in the plastic distribution system that served the area. Each of these ruptures had a $1 / 8$-inch-wide crack which extended across the top half of the pipe circumference.

The NTSB determined that the probable cause of the explosion and fire was the ignition of an accumulation of natural gas which had migrated under a pressure of $20 \mathrm{p} . \mathrm{s} . \mathrm{i} . \mathrm{g}$. from a failed plastic service saddle-tapping aipple connection into the house. Contributing to the failure was its improper installation, previously imposed load stresses which resulted from the repeated operation of heavy construction equipment over the connection, and heavy rainfall which caused the soil to exert pressure on the pipe.

The specifications called for reinforcing sleeves to be fitted over the heat-fused joint between the service saddle and the $3 / 4$-inch tapping nipple. However, these sleeves were not immediacely available. Shorter lengths, not specifically designed for this task, were cut from a coil of plastic pipe and were substituted for the required sleeves. (These short sleeves, however, did not provide the required reinforcement needed to protect the heat-fusion weld.)

R \& D CONSIDERATIONS

1) Undertake further studies in the field of heat-fusion welding of plastics.
2) Develop guidelines for reinforcement. special backfill, and tamping of mains and service lines in areas subject to external forces or unstable soil conditions.

TEGWICAL REPOTT STAMAR TITLE PAEE

TECNICAL Report stampax tinle phes					
1280-72 -72-5	$\underline{-1-20}$	$\$ 80$.$6 B-2147 \%$			
4. Hite end switid Foet torth, Ireas, 0etober 4, 1971.		$\begin{aligned} & \text { 5. weport lite } \\ & \text { Decenter } 13,1972 \end{aligned}$			
		6.Pertoraling brgentzationCods			
7. 7uther (3)		1.pertorelmi orgmization mepoŕt Mo.			
3. Friforling orgenization han end Mdress Maticenl Iramportation fafety Eond Burme of Surface Iraneportation Enfety Easidrytom, D. C. 20591					
		11.Contract or Grmi Mo.			
		T3.Trpe of lepport Ind Perica Covered ELpeline Lecident Enport October 4, 1972			
12. Sponsorling haency inas ond adress MTIOML TRMSPORTATION SAFETY BOABD Hashington, D. C. 20591					
		14.5ponsoring haency code			
15. Supplámentary Motes This raport concalio Itpaline safety Recomendation 1-72-63 thre F-72-68.					
Th.Abstract At approdmetely 4:30 e.m. ou October 4, 1971, a women tho reided ia a mall, fram house at 2109 Amada streat in Fort Worth, faces, lit a gas atove in har hitelen A volent explonion blew off the roof and blen out the four walls of the bowes. The roof fell bhek lato the buxufng rubble and the bove mate conpletely deetroged. The women suiffered eeverse berrs. The Fort Horth Flre Depertment axtived on the ccene at $4: 38 \mathrm{a} . \mathrm{m}_{\text {, }}$ and the flre reas cartinguished abortly thercafter. Ivo ges compeny mplogees arrived at 5:10, init ated a lak sanrch, and discovered five ruptures in the plastic-pipe distribution gyotent that sarved the aree. Ench of thase rupturea had a $1 / 8$-inch-ride eract which ax tended aeross the cop half of the plpe circifference. The rupture ohtch eaned the secident vis in the sucvice 11 m thich supplied gas to the bouse scrose the struet. The Fational Tranoportation safety soard deterninee that the probable came of the eqplosion and flre was the ispition of an accuniation of antural gen chlei had Ifgrated under a pressure of 20 p.s.i.f. Erco a failed plastic arvice eaddo-tepping adpple conmetion into tia house. Contributing to the failure of the connection vare ite ipproper inntaliation, previouely inposed load atreasee which resulted from time repented operation of heny construction equipment over the cornoctlon, and hang salafall which ceused the $e 011$ to exert prescure on the plpe.					
T7. Rey Words Lome Sear cas Company metural gas lenk; plastic plpe; service 11 m-y is in comoction; lanealiation and inapoction of gen distribution oyeters 3 ifgration of 82s.		T.OIstribution Statemens Relensed to peblic; distribution milited.			
13. Securley lessification Cof ehls report) unalissified	20.5 ecurity Classtiteation (of thls mege) UCLASSIFIED	10. Of Pax 80	23.1pee 43.:		

[^2]
IV. CONCLUSHONS

The Nadoal Trasaportation Safety Board conctuden that:

1. The Lone Stur consuruction specifications for the installation of plastic plpe were not apecific in detalling the type, sixe, and kind of reinforcing sleve to be used in service addleapping alpple fusion welde.
2. The phatir ges diteribution ryatem which seffered falures in this area was installed improperty and was not adoquately inspected dur. mon conseruction.
3. The mewly lastalled gis distribution yruess had been subjected to repeated londs and sremes by the heary equipment which had operated dreety over to while widening the rond ad loytag curth and sidowilke.
4. The plaxic mervice connection was weakaned addixtionally by mmproper fustion and by an meorrect reiaforcing deeve. The connection falled under the exrem applied to it by the rair. sonked, beavtan coil.
5. The leaking gar which migrated up and eceped luto dive hovee at 2109 Amanda Street came from a break in the plask service tiae which served the house acrom the ereet.

v. probable cause

The National Transportation Safery Board determines that the probable cause of the exploafon and fire was the lignition of an accumulation of natural gat which had miprated under a pressure of 20 p.aits. from a falled platic mervice andde-tapping nipple connection into the house. Contributing to the fallure of the condection were ites improper Installation, previouly imposed load atresses which resulted from the repeated operation of heavy construction equipment over the connection, and heary rinfall which caused the soil to exert presure on the pipe.

V. RECOMMENDATIONS

The National Traneportation Safety Board recommends that:

1. The Office of Pipeline Safety of the De partment of Transportation:

Undertake a zudy in the field of heat fusion of plascica and, as a result of that study, iseve regulations for the heat-fusion welding of plastic plping systems L. 40 CFR Part 192, Fusion Welding, in as much detail as is contenined in the existing welding specification for steel piping syuteme. (Recommendation No. P-72-63).
2. The American Society of Mechanical Enginecrs Gas Piping Standerda Committee:
(a) Develop guidelines for the use of reinforcing aleeves at plastic service linegen min connections and incopporase them in the "Guide for Gas Tranamisaion and Diatribution Pipine Systema." (Recommendation No. P-72-64).
(b) Develop guidelines for the requirements concerning reinforcement, apecial bo acfill, and campling of malns and service tines where their inatallation will be wubjected to excernal forces due to anticipared roed, curb, or adewalk construction, as well a unasbble woll conditions. (Recommendation Na. P-72-65).

3. The Lone Sear Gas Company:

(a) Revise its plastic pipe construction epecifications to include the apecific type and she reinforcing sloeve to be used with each type of service mdde-tapping nipple connection. (Recommendation No. P-72-66).
(b) Educate titu construction inspectors as to the mecessity for correct installation of plastic pliping sptems. (Recommendation No. P-72-67).
(c) Undertake a program acceptable to the Railfond Commiscion of the State of Texas, ∞ inspect on a random sample becis the platic service linefys main connections, similar to those at the accident site to determine the pre sent condicion of and the existing trems on the piping. The resulas of this program will determine the axtion to be raken on the other instalLations in the Lone Star system. Copies of chese cest results should be forwarded to the Reilroed Commission of the Sate of Texas and the Office of Pipeline Safety of the Department of Trantportation (Recommendation No. P-72-68).

6. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1973

The following are the four pipeline accident reports and special studies published during CY-1973.

B-PSS-73-1	Special Study - Prevention of Damage to Pipelines
B-PAR-73-1	Pipeline Accident Report - Northern States Power Co., Lake City, Minn., October 30, 1972.
B-PAR-73-2	Pipeline Accident Report - Exxon Pipeline Co., Crude Oil Explosion at Hearne, Texas, May 14, 1972.
B-PAR-73-3	Pipeline Accident Report - Atlanta Gas Light Co., Atlanta, Georgia, August 31, 1972

The Associated General Contractors of America estimate that between now and the year 2000, new construction in the U.S. will equal the entire amount of previous construction. Since almost all construction involves the movement and excavation of earth, this will undoubtedly affect pipeline safety.

A Federal Power Commission survey of interstate gas transmission pipeline indicated that from 1950-1965, "carelessness in the operation of farming, roadbuilding, and excavation equipment caused the largest number of line failures (26%)". Since 1965, while other major causes of pipeline accidents have decreased in frequency, the number of accidents caused by excavation damage has increased to 42% in 1972.

More than 600,000 of the approximately 935,000 miles of gas pipeline in the U.S. are in distribution systems. In 1972, more than 71% of distribution system accidents involved outside force damage, with 42% of these related to excavation damage.

In 1971, the Office of Pipeline Safety reported that of the 693,000 leaks which were repaired on gas distribution systems, 325,000 were caused by corrosion, 90,000 by outside force damage, 60,000 by material failures, 29,000 by construction defects, and 189,000 by "other" factors.

* Among the programs which are being used to prevent damage by outside forces are: a one-call system for quick notification of all operators of underground facilities prior to excavation, publicizing the telephone number and procedures to be taken in applying for excavation permits, procedures for locating and marking pipeline facilities, more accurate and complete records and maps of underground installations, and programs for following up an accident if it does occur.

R \& D CONSIDETATIONS

Improved technology for detecting underground pipes made of plastic, cast iron, and ductile iron is needed. Some operators have buried steel wire along with plastic piping so it can be located more easily with currently available equipment. A downward looking radar system seems to be the most promising approach available to locate underground pipes of various materials.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. RTSB-PSS-73-1	2.Government Accession No.	3.Recipient's Catalog No.	
4. Title and Subtitle Special Study - Prevention of Damage to Pipelines		5.Report Date June 7, 1973	
		6.Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.	
9.- Performing Organization Name and Address National Transportation Safety Board Bureau of Surface Transportation Safety Washington, D. C. 20591		10.Work Unit No. 1108	
		11.Contract or Grant Mo.	
		13.Type of Report and	
12.Sponsoring Agency Name and Address		Special Study	
MATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20591		14.Sponsoring Agency Code	
15. Supplementary Notes This Special Study contains Pipeline Safety Recomendations P-73-12 through P-73-28.			
16.Abstract This special study concerns damage to gas and liquid pipelines caused by excavation and construction activities, including blasting. Several recent damage-related pipeline accidents are described, and Federal, State, and industry statistics are provided in order to illustrate the scope of the problem. The study discusses the damageprevention responsibilities of excavators, contractors, and pipeline operators. Programs, methods, and devices which have proven effective in preventing damage to pipelines are reviewed, as are laws and proposed laws in several States and local comminities. A model statute issued by the Office of Pipeline Safety of the U. S. Department of Transportation is discussed. The atudy contains recommendations which are intended to help prevent future damage-related pipeline accidents.			
17. Key Words Pipeline Accidents, Excavation Damage to Pipelines, Excavation Equipment, Utility Coordinating Committees, One-Call Notification Systems, OPS Model Statute.		18.Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Va., 22151	
19. Security Classification (of this report) UNCLASSIFIED	20.Security Classification (of this page) UNCLASSIFIED	21.No. of Pages 35	22.Price

NISB Form 1765.2 (11/70)

V. CONCLUS1ONS

Pipeline accidents caused by excavation and :onstruction activities, including blasting, can be rrevented. Although new technological advancenents and new concepts should be developed, :he hardware and the knowledge currently availtbe in many parts of the country can be used to educe the number of excavation-damage accilents. The major effort must come on the local evel.
The operators of all underground systems nust work together with local government officals, contractor associations, individual contrac:ors, State officials, planners, and developers. The first step in achieving cooperation is generally the formulation of a Utility Coordinating Committee in a local area. In many instances, these committees will need guidance and a background of local and State laws and regulations to assist them in preventing damage during excavation activities.

Guidance and assistance could come from statewide coordinating committees and even a national organization of Utility Coordinating Committees, which could help distribute information concerning the latest techniques and methods of preventing damage. Regulatory measures should require notification of excavation work and should be sufficiently flexible to permit the operators of underground systems to establish convenient methods of receiving notification. Penalties should be adequate to
deter potential violators and to encourage cooperation by all parties concerned.

Regulatory measures alone will not prevent damage. The OSHA regulations, if complied with by the excavators, might be all that are needed. Statutes and regulations must be augmented by on-going damage-prevention programs of the pipeline operators. These programs must be given priority and must provide the rapid service that the excavator needs to avoid damaging an operator's facilities. The assistance of the excavator and his machine operator in determining methods of and cooperation in avoiding damage should be enthusiastically sought. They should be educated as to the damage and loss of life which they can cause and should be given as much assistance as necessary to help them avoid hitting a pipeline. On the other hand, both contractors and machine operators should be licensed and have their licenses revoked if they will not cooperate and if they continue to cause accidents. A concerted effort by all parties involved can drastically reduce the number of excavation accidents.

VI. RECOMMENDATIONS

The National Transportation Safety Board recommends that:

1. The Office of Pipeline Safety of the Department of Transportation:
(a) Amend 49 CFR 192 and 49 CFR 195 to require each pipeline operator to establish a program for the prevention of excavation-type damage to its underground facilities. ${ }^{5}$ (Recpmmendation No. P-73-12)
(b) Revise its methods of summarizing the reports of individual gas pipeline leaks and failures to show clearly those accidents resulting from excavation activities. (Recommendation No. P-73-13)

[^3](c) Amend CFR 192 and 49 CFR 195 to require that consideration be given during the design of pipelines to prevention of damage to them in the future, especially in locations where later excavation might be expected. (Recommendation No. P-73-14)
2. The American Public Works Association:
(a) Encourage its local chapters to establish Utility Coordinating Committees in all urban and suburban communities where effective committees are not currently in operation. (Recommendation No. P-73-15)
(b) In regard to Recommendation 2(a), develop guidelines that will assist communities to develop systems, procedures, and organizational arrangements for coordinating and regulating the activities of all parties working near underground facilities. (Recommendation No. P-73-16)
(c) Encourage its local chapters to adopt standards which show the desired locations for all facilities installed below ground. (Recommendation No. P-73-17)
(d) Develop standard colors for identifying underground facilities to be used for temporary marking and staking by operators of such facilities, and urge local chapters to support adoption and use of these standard colors. (Recommendation No. P-73-18)
(e) Coordinate, with support from the groups which participated in the Safety Board's April 18, 1972 symposium, the establishment of a national organization of Utility Coordinating Committees. (Recommendation No. P-73-19)
3. The National Association of Regulatory Utility Commissioners:
(a) Urge its member commissions to encourage the establishment of local and statewide Utility Coordination Committees where non exist. (Recommendation No. P-73-20)
(b) Urge its member commissions to propose and support legislation that will help prevent damage. (Recommendation No. P-73-21)
(c) Urge its member commissions to propose and support legislation requiring persons planning to excavate, and operators of excavation equipment to be licensed. (Recommendation No. P-73-22)
4. The American Society of Mechanical Engineers Gas Piping Standards Committee:
(a) Develop guidelines that can be followed by gas pipeline operators during design and installation of piping systems, with emphasis on prevention of future excavation damage. (Recommendation No. P-73-23)
(b) Develop guidelines to assist gas pipeline operators in establishing excavation damage prevention programs. (Recommendation No. P-73-24)
5. The American National.Standards Institute Section Committee for Liquid Petroleum Transportation Piping Systems (ANSI B31.4) include in its standards the requirement that consideration be given, during design and installation of liquid piping systems, to avoiding future excavation damage. (Recommendation No. P-73-25)
6. The American Petroleum Institute develop guidelines to assist liquid pipeline operators to establish excavation-oriented damage prevention programs. (Recommendation No. P-73-26)
7. The American General Contractors of America and the International Union of Operating Engineers develop guidelines to be used by contractors and machine operators prior to and during construction, with emphasis on prevention of damage to underground facilities. (Recommendation No. P-73-27)
8. The American Gas Association and the Independent Natural Gas Association of America design a standard gas pipeline marker thai can be utilized by all gas pipeline operators to mark the location of their transmission pipelines. (Recommendation No. P-73-28)

On October 30, 1972, a bulldozer struck and snapped a 3/4-inch steel gas service line in Lake City, Minn. Gas at 36 -psig pressure migrated to a department store which blew up and later caught fire. Six persons died and 10 more were injured.

The power company later unearthed the entire gas line and discovered that in addition to being snapped by the bulldozer, the line had also been pulled out of compression coupling next to the main.

The NTSB determined that the probable cause of the accident was the ignition of an accumulation of natural gas leaking from the unmarked service line which had been struck by the bulldozer. Contributing to the accumulation of gas was the failure of the company representatives to realize that the 15-foot displacement of the pipe meant that another break had occurred elsewhere. Also contributing to the migration and permeation of gas from the leak into the department store was the wooden plug which was inserted into the broken pipe to stop the flow of gas, but which acted to seal off the escape route for the gas.

R\&D CONSIDERATIONS

1) Undertake a study of fail-safe devices which will stop the flow of gas from ruptured gas lines.
2) Study methods of readily identifying conditions which could produce forces or loads on compression couplings which cannot be sustained.

15. Supplismentary tiotes

In suppet contains Pipalive safety Recomendations 7-73-2 through p-73-11.
 pifetine incitcit
ac 4:15 p.m., oa Detober 30, 1972, th bulldozer atruck and sumped a
 otere located gaar the rupture, but not served by gas, blou up and later cengtitire. Six persons died as a reoult of the explosion and 10 more vere sajned.
 arvice line and discovered that in addition to beipg sapped oy the halldoser, ind lise had been palled out of a compression coupling neart to the min. Ces, at 36 p.e.i.s preseure, had permated the coll, ferated feco

\rightarrow The Watiocal Traneportation safety Board deternines that the probable cane of che explonion and flre ia the department otore bascment vas the foeftion of an cocumation of maturil gas leaking from the umaried serviee lime thich hed boen struck by the bolldoser.

iv. conceutions

The Mational Treapportetion Sefety Ioml toncludes thet:

1. The source of the explosion in the depmitment sote was matutal gas which leaked frima palled compression coupling, pertnentel the ml , migrated mio the basement through finutes in the cellor wallh, and accumulated in the tronmens.
2. The 15 -foot dipplocement of the pipe iy the bulldozer should have waned obsetvers that some fillure had occutted at sotre point oliex than the vistble frech.
3. The burdings edjacent to the leak were ant checked for gise in violation of the litent of the NSP Gas Opertion and Maintemence Procelure Manual. The mamul, howiver, phood mote emphasis on texting and checling for yan than on the evacuation of mhabitants.
4. The wooden phy difven theo the meverd and of the survice line diut of the semes at excape for the leaking ym, incresed the ge presure whinin the will, and caused the gem pe: neate the mirrounding soll and migrite mo the department atore more mpidy them well otherwise have occurted.
5. Ter fow of gas through the felted urvice the we mot thit off expeditioosly, beroune the mocemary whi ley was on a merke truch milles from the ceam. Two other locel ratues to mop to gem hem move troperable for the cam respos.
6. 1t e grouionable whether the deslifnation

 ath the cracol merm of 49 CFR $192.181(a)$. The ergention homever, does mot mestablah elfectue ertionta for che mumber and location of colt rive.
7. A proconarsetion meetins was wot held berween de gas company and the conersoter gor tre ane mqutred to be held. Such a moeting.
 to the wort ares and might have awerted thin sectres.
8. The seforty and HeNots o., anitinn contained - 27 CFR 1926.651(a) does not re, it - thet a cefiatie citernumation be made wheshit ony mader pound foctlution oxites in the mamednate mes of comerrection warh. This pert of athe rixy lation appeats unaworceable as promenty notecen.
9. The comprestion coupling pulled ovi as a mande of the liase being hin and duplaced by the mildoner.
10. The Federel plpeline requilations (49 CFR 192) ure vage mader us esubliating the condi thone moder whith comprestion lype coupling may te med. The dectiton of whether to ume moli couptiag, to offert, in kfi to the teadrividual gecompany dedign endineft.
11. The Late Ciny Fire Deparement. Police Deppromem, and Ofize of Civi Defemer cum Gned effectively to extinguish the fire, everunte de dead and lap red and mainalin urdet in the affected ano.

V. momallecnis

The Mational Tremportation Sufety moned Cetermianes the the probuble cause of the explo con and fre in the departmene wore bexmens ene the ferition of an eccumulation of netural m keakias from the unmertel arioe the

Contributing to the cocumimetoe of gen tom the fillure of the NSP represemative to malle that the isfool d placememe of the pape nemas that anothes break had occurred elvewhiteth.

Constiburing to the mirratko and pernanedom of gas from the ked late the deparmess moes was she moden plug which was laverved in the broten plpe end in in effort to reop de dow of gra, but which mecked off the scape rowe for the ges.
Comertbusting to the moume of pis relened was the unavaliablity of ste mequired vilue my. which necemhated a thene rumaumtag escownitio ord exposise of the bured valve before k comll be duit off.

И. RECOMMENDATIONS

The National Tramportation safery Iond rocommende thet:

1. The Office of Pipelime Safery of the Dw parment of Tranaporcation:
(a) Undercile a andy of falt mife anvices which will map the flow of an from rupened Unes. Bared on the remults of thin mady. Ops chould conader amending 19 CFR 192 to requite the installation of euch devteres on appinprisue locations in pio deribletion opitems (heroramendetion No. P.73-2)
(b) Undersde neview of al CPR 192.367(b) relative to the emeretalory a m the conditions whikh permili stie me of com. premion couplinge, and initione a ruberalima which will definitely identify complitions which permite of prohibet te wer of compres boon rouplinga. If necemary, the review chould Include - mudy of objoctive methoth of medily identifying conditiome whith ceull produce force or loads which cannot te mon colned. (hecommendation No. R.73)
(c) Amend 40 Cra 102.181(0) os motur requirements which oapme cteaty the trove
of OPS comcersing the number and the locetion of eneryency valus in hinh pressure gas discribution oytucims and which treat the need for terys in the lands of local euchorities. (Recommendetion Na P.73-4)
2. The Departucat of Labor revisw its Ocrupational Safegy and Healdh Requlation 29 CFR 1926.651(a) to require das a positive determiastion be made a to the location of underfromed facilizies as athe proponed excavaion site. (Recomenendxion Na. P.73-5)
3. Thr American Society of Mechanical Eagineces Gan Piping Standerds Commitree develop gridelines to tee ased by distribution riputive operasess in designeting the locstion of emergency values to be med to maure a cinimere time to shut down a section of main in zan encugency. (Recomprendmion No P-73-5!
4. The Nordera Strecs Power Company:
(a) Sevise de Gas Operating and Muinsensoce Proceduras Mamad to emphaire more fult and deanty te inportance of mpidily shutring down firled pipelines, evacuwing pensos from the affecteal wee, checking Luilioge njeceme wo the leat area, and notifring police and fire officies. Actention

Hould be given to the importance of having the proper value keys immedacely avelisble. (Recommendation No. P-73-7)
(b) Designate emergency valves in its distribution systems to permit rapid shutdown of failed sections without interrupting gas service to an entire community. iRecommendation No. P.738)
(c) Emphasize to the maintenance personnel the importance, need, and dasirability of supplying pipeline location informacion and clearly marting existing lines. (Recommendation No. P.73-9)
(d) Undertake to inform the public more fully as 80 the mature, characterixics, and hanards of natural gas and whe teeps to be taken when it is encountered. (Recommendrtion No. P-73-10)
5. The Department of Public Works of Lake City. Minn, require coordination between the contractors and the affected owners and oper ators of underground facilities in the ciny \approx a prerequisite for oberining a construction permiai. (Recommendation No. P-73-11)

NTSB-PAR-73-2 PIPELINE ACCIDENT REPORT - EXXON PIPELINE CO.., CRUDE OIL EXPLOSION AT HEARNE, TEXAS, MAY 14, 1972

This report describes and analyzes the explosion on May 14, 1972 of crude oil vapors which had sprayed from a 6 -inch long rupture in a 8 -inch liquid pipeline near a pumping station in Hearne, Texas. The explosion was followed by a fire which consumed over 300,000 gallons of crude oil. One person was killed, two injured, one house was destroyed, and several nearby communications lines were melted.

The pressure in the 48-year old pipeline at the point of the failure had increased over a 10 -hour period from 400 psig to 530 psig . There were no pressure-relief devices installed on this system.

NTSB determined that the probable cause of the failure was excessive internal liquid pressure. Contributing to the failure of the pipe was its thin-wall condition, caused by corrosion of the unprotected bare steel walls

R\&D CONSIDERATIONS
No R\&D requirement.

The Dationel tramportation lafety Loard coneludes chats

 giner the atatic preseurn in ceffect at the tin of the merne.
2. At the tim of the cocldoat, there wase 20 preeoure-relict
 hem in opration aul hat been oet at a presoure thich reflectel moerrebeis the true conficton of the plomling, the llm fallure woull not have cocircul.
3. The cucceatul 1,100 -p.0.1.8. Aytrosentle cest performal on to
 reoten, In lime fatlal at 530-p.e.t.8. Fremere.
 lonet thie fatid coselon of lim in erier to evelmate the current com
 twe a ade probure ratios.
S. The Inok of focilition to trenent the eontinousis recorfen limo

6. It in tim of the coellent, troco was not in conformence otth
 is ryw - tharatore unaforceable, ad is not opectile morigh to gule
 informetion for the safe operation of Piplime.
7. Tomarnanee oa the part of the Ilepatehere of any Ifme tronbla firm 12830 a.m. eatil $6820 \mathrm{a} . \mathrm{m}$. resulted in the late motiflention of the minterence procunl an the oubeoquat fallure to ohat eft the Iondre cisie ofl rall after the cionion an Elre.
8. In 4h-hour Itpee beteen the In rupture and the aplopion
 eviel all pipelim, radiroel, ant celophoen comudeations an biented die min Miging finto Imern from the reuth.

 property lange woull inve cecurce.

7. Pouncis caves

The Eatiomal Irwoportation Eafoty Soand loterudno that the peob-

 A. teppratire of the ervie ofl within the pipe, the realtent praion of the erwle ofl, al the fallure by the plplive oomen to provite a

Contrilutint to the fallure of the plpe tes ite thingall comilticn,

 - a facter in the plpelim fopture.
 ciom in thatr operating prespures based upon the affeats of contirale ecrrcelion, or both. Recomandation Mo. P-73-29.)
(B) Amad the 49 CR 195.408, Commications, to cesertbe more tully the type of Information required for the eafe operation of plpoline and the cordition under wich this information ahould be crape(fited rmotely. Recomendatica Ho. P-73-30.)

2. Ite Expo Rpo Lime compary

(c) Inatall preasure ralief ecrices on thio gyatel and ofllar syater, 18 applicable, to provent a repetition of the failure of a cloed-in ayste tue to overpressure. (hecomemation Mo. F-73-31.)
(b) Inotali facilitie capable of ramotaly tranouttion the cowthaons racording preeurea from the Comy and Boarme pipp atation to the catral diopatehins offica. (hecr madation Mo. R-73-32.)
(c) Inotruet the ilspatechert to monitor earefully thoee Ifve wich are eloced-in and inopuration to preclude the poseibility of overFrebeure. (Recomerdation IO. 8-73-33.)
(d) Initiate a thorowish cathodic protection eurver over this ago-
 and physically inopect the pipe, with particular aphaile on the koove mot epot" corroeica areas. (hecomonation Io. P-73-31.)
(o) Add aditionel cathodis protection equipmat, beeed upon the remelts of this eurves, to altisate the contimule affecte of ecrroeto on this oraten. Oecommadation IV. 8-73-35.)
(f) Hot operate or cloes in the Comy to sateum eysten from Bowne to sates at a preasura greater than 400 p.s.1.8., watil at least this enction of line has been bydroatatically tested succeesfully ard foud to be cafe for mighar operating preacures. (Recomendation Mo. 1-73-36.)

NTSB-PAR-73-3 PIPELINE ACCIDENT REPORT - ATLANTA GAS LIGHT CO, ATLANTA, GEORGIA, AUGUST 31, 1972

This report describes and analyzes a gas explosion which occurred on August 31, 1972 in the one-story annex building of an Atlanta high school. Gas had leaked into the building from a cracked 6 -inch cast-iron gas main. The building was evacuated and gas company employees arrived 30 minutes before the explosion. One person died and seven were injured.

The NTSB determined that the probable cause of the accident was the ignition of gas which migrated from the pipeline which had cracked as a result of uneven soil settlement which applied a bending force to the pipe in an area weakened by graphitization (corrosion). Contributing to the explosion was the failure of the gas company to check for gas in the building, to shut off the flow of leaking gas, and to notify police and fire officials.

R \& D CONSIDERATIONS

1) A more extensive testing program to determine the effect of graphitization on the strength of cast iron pipe would be useful in establishing at what point a graphitized main should be considered for replacement.

TECHICAL REPORT STAMDARO TITLE PMEE

1. neport inion	Overnment decter		
7. Tite and sutite Piefline Accidit Report - Atlanta Gas Ligh: Company, Aclaata, Georgia, August 31, 1972.		S. Report Oate August 16, 1973	
		6.Performing orgenfzation Code	
7. Huthor (s)		-. Performing Organlzation Meport Mo.	
3. Firforiling Orgonleation kime and Address Xational Transportation Sefety Board Dureau of Surface Transportation Safety Hashington, D. C. 20591		10. Work Unit Mo. 1138	
		Tl.Contract or Grant Mo.	
		13. Type of Report and Period Covered Pipeline Accident Report August 31, 1972	
12.Sponsorting Agency Mame and Address GATIOMAL TRANSPORTATION SAFETY EOARD Mashington, D. C 20591			
		14.Sponsoring haency Code	
15. Supplementary Motes This report contains Pipeline Safety Recomendations P-73-37 through P-73-i6.			
Th.Mestract This report describes and analyzes a gas explosion thich occurred shortly after 9 a.m. on August 31, 1972 in the annex builiding oi an Atlanta, Ga., high school. Gas had leaked into the building from a cracked cast-íron main located beneath the street in front of the anoex. Atlanta Gas light Coapany (ACL) personacl arriver at the leak site approximately limir afier AGL vas first notified of the leak and approximately $1 / 2$ hour before the explosion. One person died and seven ot،ars were injured as a result of the accident. The Saticnal Transportation Suiety Board determines that the probabie cause of the explosion was the ignition .f gas that leaked frum a cast-iron main cracked by unever soil sett!ement shich applied a bending force to the pipe in an area weakened by graphitization. Contributing to the explosion vas the failure by the גas company to check for gas in th. building, to shut off the flow of leaking 3es. and to notify police and lire nificials. The report contains recomendations to tise Office ot Pipeline Saiety of the Department of Transportation, the dmerican Society of Mechanical Engineers Gas Piping Standards Comittee, and the Atlanta Gas Light Company. The recommendations concern, emon; other itens, OPS accident-reportins requirements, nat fomide compliance with Fedirally required uritten emergency procedures, factins involved			
	a Iron, Fratured Shutdown Welay, O of Cas. Fire itication. Pipeline	TB.0fistibution Statement This document is available to the public through the National Technical In:crmation Service, Sprinsiield Va., 22151	
13. Becurity Classification Cof ehis report) unclassified	20. Securley Classification (of this page) MCLASSIFIED		

COSCLLSIONS

1. The Atlenta rias Lisht Compan: was not in coapliance with 69 CFR 192.615. which requires uritten emergency procedures.
2. The actual harard that existed at the annex building was not known by ACL when it received tie leak report, nor was it determined by the emirgency crew after they arrived at the scene.
3. An accurate history of th. causes of breakage of cast-ifon mains cannct be obtained from the accident reports filed vith the Office of Piptiline Silcet by the gas distribution operators.
4. Preventative measures are needed to reduce the hazard from fractures of cast-iron mains. These measures can be deternined by aystematic review of conditions that cause juch fallures.
5. The role of sraphitization in failures of cast-iron mains has been established by the National Aureau of Standards. Graphitization reduces wall thickness. which. in turn, reduces resise tance to bending seress.
6. It is ditiicult in deli.rmine the extent uf external corrosion in cast-irun fipe be the visual examination required by 49 CFR 142.454.
7. Since AGL rebordi did mit indilate the frequency and auses
 \therefore assess enc problam Murately and plan remedial action.

$$
\because \quad P R \|, i \text { BIE Cillof. }
$$

 probable wiss of the rip! i. n hai fue iantion of eas that leaked from a iast iran main irakid h: unewen wil wettement which applied

 tu check for as in the budding. th thest יf! the flow of luakine ias. and to notif: pollce and firu rifici,its.

iI. RECUMENDATIM:S

1. The nfilice of Pifiline iafet: of the Departmont af Transpursutio:
(a) Impr. \therefore the wablont-rupur:ine requirements
in recte ta sbtain a better uncerstand: u: :ift onist, f foilures of cast-iran mains.

(b) In : Persti 7 nith the varimus State rezulatore erentis. detertine the derere if nationmide cmpli min with io rfR 192.nlj. Written emericinty prowedaris. and take enfirramint action accordinz1s. (Res :mendation Sir. P-73-38)
(c) In conpuration with the various State requlatory ajuncies. entcuracic gas distribution operators to review the folcturs that cause fallures in wast irun 7.ans in their sistems, and to take necessiry dotion to reduce the hazard to the publi. (Rerwneadation No. P-73-39)
(d) Give idditional resulaturv consideration to the effects of luaphitization on the resistance of sast-irun mains to external loads. Locslized and acheral sraphitization should be defined. (Recunmendation No. P-73-40)

2. The Aacrican Society of Mcchanical Engineers Cas Piping Standards Conittee:

(a) Divelop criteria which can be used by gas distribution operators for reducing the potential hazards from breaks in cast-iron mans. The criteria should consider replacement or repair of mains, basced on pipe size, giraphitization, extermal loads. craffic, soil condition and stability. and gas pressure. (Recommendation No. P-73-41)
(b) Develop euidelines for determinine the extent of graphi:ization of cast-iron pipe by means of visual examination, as required in $4 y$ CFR 192.459, and the effects of such mraphitization on possible future leaks or fractures. (Recomendation No. P-73-42)
3. The Atlanta ris Light Company:
(a) Prepare written mergency procedures and acquaint appropriate operatins and maintenance employees with the procedures. (Recmmendation No P-73-43)
(b) Improve its record-keeping system sot thit the number and causes of cast-iron main bruaks can be readily obtained. (Recommendition so. P-73-4í)
(c) Take whtever remedial action is nucessiary to reduce the passibility of bruakage of cast-iron mains. This action should includ. replacement of thos. suctions oi cast-iron main suscaptiblc to failure. (Recommendation No. $P-73-\frac{1}{5}$)
(d) Develop a suctionalizine prosram of its highe pressure distribution systam so that priplanned procedures are available to isolate any section of its system in an emeriency. (Recomendation P-73-46)
7. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1974

The following are the six pipeline accident reports published during CY-1974.

NTSB-PAR-74-1	Pipeline Accident Report - UG1 Corp., Coopersburg, Penn., February 21, 1973
NTSB-PAR-74-2	Pipeline Accident Report - Southern Union Gas Co., El Paso, Texas, April 22, 1973
NTSB-PAR-74-3	Pipeline Accident Report - Missouri Public Service Co., Clinton, Missouri, December 9, 1972
NTSB-PAR-74-4	Pipeline Accident Report - Columbus Gas of West Virginia, Inc., Charlestown, West Virginia, December 2, 1973
NTSB-PAR-74-5	Pipeline Accident Report - Washington Gas Light Co., Bowie, Maryland, June 23, 1973
NTSB-PAR-74-6	Pipeline Accident Report - Mid-America Pipeline System Anhydrous Ammonia Leak, Conway, Kansas, December 6, 1973

NTSB-PAR-74-1 PIPELINE ACCIDENT REPORT - UGI CORP., COOPERSBURG, PENN., FEBRUARY 21, 1973

This report describes and analyzes a natural gas explosion in Coopersburg, Penn., on February 21, 1973. A contractor was constructing a sewer line parallel to and near a 49-year old, 8 -inch bare steel gas main. Dynamite charges were detonated and the contractor notified the gas company that gas was escaping and he thought the line had been broken. Gas company personnel arrived and attempted to evacuate a nearby apartment house. The building exploded and collapsed and the escaping gas caught fire. Five persons were killed, 16 were injured, and two buildings were destroyed.

The NTSB determined that the probable cause of the explosion and fire was the ignition of an accumulation of gas which leaked from an acetylene weld in the gas line after the weld had cracked by the detonation of excessively heavy and closely positioned dynamite charges. Contributing to the accident was the failure of the municipality and the gas company to act upon an earlier warning by the gas company inspector about excessive use of dynamite and the failure of the contractor to fully observe blasting regulations.

R \& D CONSIDERATIONS

No R \& D requirement

IV. Comadision

1. The fatlere of the acetylen will was couced by a ouden. brypt, erternal chock wave produced by an accesalve welent of froudte charges datcaled ane to the gee min.
 contractor, tel, of the Municipal Auchority to the Mazerd of blatif mear tat liom. The varring given by the 比I foGector to the contractor, 顽, and the Municipal Authority cout the aceasiv valghe of the fynande cherget and thelr proudadty to the b-luch gat min aleo rat uobeaded.
2. To Freplamed marsency procedure hed been prepared of VII to eope fenediately of th the coneequences of a serious gat leak.
3. Althougt the Municipal Servicee Conference hed been thell with the Manicipal Authority, che contractor, UCI, and other alfeeted parties. 00 one hed carefully letalied the proposed droudting. not thed the size of proulidty of charges bea llocurend.
4. The Mulcipal Authority, cturounh the enginexp whom it Med anelgned te the semer profect, fallud to inapect clocely coovin to prownc che comernctor from using meafe blasting proctice.
5. The reight of che chate and the fetonetion of one bean charse below the line insten of three light chargee if various lepthe vere it exeen of scace blapting resulations.
6. The extlom of the tri at contractor 's personnal at will ae thooe of the Reanylvante scate Police and che Coopersbure fire an police depertmente in extingulchlng the fire. ovecuntios the injured, ent mincalaite onder vare ereplery.

P. moman it cause

Tha Razioal Framportation Safaty loand deternimee that the probeble
 of ce acenalation of get which laked from eo cetyleme wid in an bfach plpelise after the wid hed been eracked by the detoention of er ceasively haery ast closely posithoond tynendte cherges.

Contributis to the plpelime fallure wee the fallure of the innici21 Auchority of the Boroush of Cooperaburs and the UCI Corporation to

 contractor to oberve tully the state blanting regulatione. Coatributime to the explosion and fire vas the lack of a epecific preplemed amegeng procedure for lake. Contribution to the celay in extingulehios the fire mo dial fallure te ioolate rapidly the failal enction of pipe.
V. A.curermations

The liational Tranoportation Safety board recormends chat:

1. The office of Pipelise Safety of the Dopartment of tramoportation lesu regulation to require that pipelim operators have dafinite proceduree to protect their facilitice affected by blatir operation. Thees regulations chould consider, it a Gutar, the ase of the pipeline, the operatips preseure, the tpe of mald or mechenical joint, the geseral cordicion of the factisty, the gyp of soll, and the ares ceopraphy. Necommeadation Io. (-76-1)
2. The Aurican Society of Mechanical Engisears fae Pipipe Standarde Comedtee develop suidelines for wee by pipeline operatore to protect pipelion facilitice affected by blastias operrations. (necommation Mo. P-76-2)
3. The Musicipel Auchority of the Boroush of Coopersturs, the hational Lague of Cities, the Mationel Aseociation of Counties. and the I'S. Conference of Mayore:
(a) Inttiate more comprahensiv and more controlling inepection procedures on construction projects to inmure that all rork is perforind safely and correctly as detciled in conorruction plans and specifications, particularis mere blastios is iavolved. (Reconendation Mo. P-74-I!
(b) Coaduct comprehenaive and dotalled precomituction mentings for all Frojects to explein the full seope, tindng, ard eriticel or hazardous elements involved At these metinge. the concractor and the affacted utility compenies abould ce imetrueted co worix closely with ach orier and rith an Governent rapresentatives an the jobsite. fesommandation
Mo. P- P4-a)
(c) Insure that any utility compary affected by conatruction have a proplanned emergency procelure ti.ich is understood by all parilea and which ean be carried out expeditiously. pecomendation io. P-74-5)
 te at the jobsite at all cimo thrise coanermelien. (lecompodatlon Ho. ($-76-6$)
4. The teI Corporetions
(a) Intclate nore coatrollink inopection proceduren on cometruction projucte in the reialty of all gas factlitien. where thae frojocte Invoiv slepelsy, the CI Inepecter choult obeerv the abot hole lowimes and obtala a copr of
 5-76-7)
 Wha construction Frojects are in prouldity to gen feciliclas. such procelures ahould ine luse the of preme lectal and prelocated valves mich ean be cloon inmilately in the ruat of a ges leat. Rrecommaletion lo. 5-76-5)
(c) Duwiop llelsom, before and furtre construction, ith atw coatractor and otint parties affected by conatruetion. Ae part of this lialeon, thi chould fully fufore the comtractor asf the consp partice of enarsency proceture and choull be fully informe: of the dally pecsrees of eomstruetica. (tecomedation \% \% ($76-9$)

181	puncis m. Meamars
181	LOUTS M. Thare
	Mates
181	IRABL A, Moctes
	Hober

Pobrexy 7. 1974
 ell met pertielpate in the eloplica of thete repert.

NTSB-PAR-74-2 PIPELINE ACCIDENT REPORT- SOUTHERN UNION GAS CO.. EL PASO, TEXAS, APRIL 22, 1973

A natural gas explosion occurred in El Paso, Texas, on April 22, 1973. The explosion destroyed seven of 15 units in an apartment complex, killed seven people, and injured eight.

The explosion was caused by the migration and ignition of an accumulation of natural gas which had leaked primarily from a broken thread in a cast-iron reducer and to a lesser extent from two nearby corrosion leaks in the 2 -inch castiron distribution main. The uncovering and disturbing of the earth around the pipe by the gas company 6 days earlier, in an unsuccessful search for a gas leak, contributed to the fallure of the 6-inch to 2 -inch reducer.

The fact that the reducer was cast-iron, a more brittle material than steel, contributed to the thread failure. The gas company also did not follow up the report of its maintenance crew that a reported leak could not be located.
$R \& D C O N S I D E R A T I O N S$
No R \& D requirement

Gas dors ind bean detected by ence teanate at laat a lay before the eploalon. but elther through isporance or indifference to the potemdal langre to ona had alerted the fire department or the gas compary. In civ pest, southern Duion had llatributed gas educational material to cheir Totomers. bit had not ingluded a telophone muber to call la the bly 0 a lant. The codesfon could by the canse of a considerable Helion, the safoty masenges wo le tryite to report a gas lak. Is ab proom tho efght be axpond to lonting customers and did mot rench all

In epiosion cocurred in an area vhere may Maxican-Anericen redind. This should have alurted the gas compeay to pelat the gee duese

 eape. Milcilamane Amartisipg is cooducted by other pipelime operators tea ofedificast segments of the commonty eerved epank and understand lengmete ochar then forilith. The proble of custoner eor prolic veraduge af also itsewesed in the Bond's report of the Aroandale, Vh., eceldeat

17. Conclusions

1. Th ges thich necumlated ender the apartmint houee flocrs ind loned primurily from a broken east-iron redricer and to a leaser erteat frow tocrovion lenice in the gas min.
2. Th exatolroa reducer falled ia the throeded action bemene of let of chequate erpport from beloy and ropeated shoek lade celivered by
3. Souchara ondoe ill mot properly follow the report of ith construction and minturnce erw that the reported leak eould not be lecetel.
4. Souchina Undon merounel galld to loente or co coternine co

5. The comats and the oprtmant ouperiatendent who bed anelled gat oore falid to report the condition to dicher the gae eompang or tha

[^4]6. Tha El Foco Fire Departmant and the Pollea Dopartmat combina oftertmis to omeuate the lad and injured, to reroute traffle in the aren. ad to mincaly orter.
7. 45 CR 152. $615(\mathrm{~d})$ ton mot opeciflcally require pipellow operatere

. Wotther the Federal recviations mor induetry ocendarle poode puibuce to plpeline operators corcoraibs replacement or protection of Hetwidel cast-iren plpis.

V. Tmonhle cause

In Kakloal Irameportation Safery Loerd deternine that the probeble
 artent from too corroetion from a broken cast-iroa reducer and to a leseer gratel benath the concrete con in the distribution min. It gas ale
 sence.

Ine mocucrist and Hatroblnt of the east-irce plpe by the gas con
 concrithed to the failure of the reducer.

Cancributing the loes of life and the Froperty danese varu the
 cone of a lank, an the fallure of both the cemante and the apartmeat aprinteadent to motify althry the gas company of the fire depertinat at the gat oloce vilch hal han fotected provionsly.

R. DCOMPDATION

In fretional framportation Safety Loard racomenis chat:

1. The office of Fipeling 8nfoty of the Dopmonnet of fremportacion:
(a) Anat 65 CRI 182
sequire thit capt-ison piping or fictime men their erport from bion mintenmen work in buch a wiy as to aplest eutoll forees thet conl repleced or relaforced to protect -2x-10)

 put gas engcoelea be priatel in pollich and in octrar languges vich - ofgolflemat pertion of the comentity arval epenk and nideratand.

 Condtton demelop guldelines for plnpointing the locatlon of reported gen lenk. Theen guddelines abould inelude procedures to datermine the haren of merard that elats es a reoult of the reported lonk. greoomendection 5. (-7 - 12)
2. The Sonthern Union Gae comenyt
(a) Imermet the mintenance eram comcerales the mancte of inver
 precomedacion IV. (-74-13)
 are loencel. Recompation Io. $7-76-14$)
(c) Indelate a progrea of instruction for gas enstomers and ehe curel poblle concoruits the potential haserde of natural gat. This pro-
 celephoce most to be ued in margencies and plecint ducactenal

 didia the Hecribution yeceme. (hecomendarion Mo. P-74-15)

ET His mrionil gusfonmution suray now

181	$\frac{\text { Nox }}{\text { chen eno }}$
181	Pucis In Manas
	Hober
181	Louts M, mare.
	Pimber
181	HILITAK R, EAYET

 capiction of dile ryout

Foviney 13. 1976

NTSB-PAR-74-3 PIPELINE ACCIDENT REPORT - MISSOURI PUBLIC SERVICE CO.
CLINTON, MISSOURI, DECEMBER 9,1972

This report describes and analyzes a gas explosion and fire in downtown Clinton, Mo., on December 9, 1972. GAs had leaked into a building from a cracked 4-inch high pressure cast-iron main. Gas company employees arrived at the site 50 minutes before the explosion. Eight persons were killed and seven were injured.

The NTSB determined that the crack in the 4 -inch cast-iron pipeline was caused by a combination of soil stresses and vibrations from a nearby railroad, which applied a bending force to the pipe in an area weakened by graphitization (corrosion). Contributing to the explosion were the failure of the gas company to shut off the gas to the leak site and the inadequate efforts of gas company personnel to prevent the ignition of leaking gas detected in the building.

R\&D CONSIDERATIONS

1) Develop guidelines for the use of telemetering on gas distribution systems so that system failure can be promptly detected.

1. Ine metarn eiba by hit after ins conflytit the preaone of Inder ger in the bequmat ill bot freveat the pionion.

 it inderrpelon al gat corvice to cotire commultios caly med

 Altmetions, his if not atterpt to oparate the Initially, bet Intend eloul the ouly after other mon-anargengy vilve elower

S. In grectien is his of mot provicles mivn Inge and melve loen-
 rexufod to thit ati at ilo at ges.

 aletint. It does mot require sufficiant informition to pernd an equater to lateat falluen in he aycten promply.

 theor hoigoted nelve io equatel flut.

racires curs

 Hot aft in flow of see to the lonk aste and the londeguate afforts of
 cocestol in un intillis.

nrconeratrome

Ino Dational stamportation lafety boerd swoomeode thats

1. Tin octice of Ifpelfin safaty of the Depertmat of Iramepocte
(4) Ievien 49 CR 18, N 1 to raquite plpoline operatore to telo-

 ecenoure or flom chapgen. The gpe and locetion of the Cata pointe shculd be conpleced on an individual beale ant choull imelude alsis-fed aysteme earvins cubstential

(b) Dotive thet constitutes an anirgency and provide elerificaHion of the roquiremate of erregency procedures mater 49 CR 12.615 , Emictiocy plem. Recompondetion Io. 20 \quad-17
(a) Enpors that doeisnated amgeocy velive be the velve eloop indelaliy then a suction of zin is required to be

 Cometetme
(b) Sunlop guldelime toe the on of cellmateritas co gas diseribution aytuen to that ayiten fallures can bo prometly checeten. Acecmemation 80 . 8 -74-19
(b) Epeat the gribellime on the proveotion of aceldcetal isdelcon, to proulde for more comprcheanive ruidenee to plpe-
 tiren. The guldelinat abould imolude roch robjecte as manilation of otrueturen, Frohibition of electrical aditelh

 (revimenation Ho. $8-24-20)$

2. Tin mesenti Publla service compengs

 PR-21
(i) Dreall telometering aqulpmat at the cllatoa and ochar coma horker ctaticen, so that groten tallures cal ive framely low bectel. (iceommelation the. P74-22)

 theormilation $5-74-23)$
(1) Incermailal cetion to rebuce the poeaibillty of breatoge of east-irch mine. Thio ection should lesivie replecement of those
 velaction 2-74-24)
 hefion setem so that preplasuel froceduree are aviliat io to
 melactea 80. $8-76-25$
(c) Traln an oudp all approplate rallo-apuipped fiell preamel (Insivin electric survicemen) to locate ed operete nin

(4) Irovile intw location and ocher meceang informatica to

If (\%)

NTSB-PAR-74-4 PIPELINE ACCIDENT REPORT - COLUMBUS GAS OF WEST VIRGINIA, INC.,
CHARLESTOWN, WEST VIRGINIA, DECEMBER 2,1973

On December 2, 1973, an explosion followed by an intense fire,killed three persons, injured two others,and destroyed a house in Charlestown, West Virginia. After the accident, two pit-hole leaks were discovered and repaired in the 2 -inch bare steel gas main, operated at 39 -psig pressure.

The NTSB determined that the probable cause of the accident was the ignition of an accumulation of natural gas which had migrated from the two corrosion holes in the cathodically-unprotected pipe. Contributing to the intensity of the fire was the large amount of gas which had accumulated in the attic and in the walls of the house. Gas odors were noticed by the owners of the house, but were not reported to the gas company or the fire dept.
$R \& D$ CONSIDERATIONS

1) Develop guidelines to determine when to conduct leak surveys on various types of pipes and to determine areas of actual corrosion.
2) Investigate the availability and feasibility of gas vapor detectors currently manufactured and their installation in manholes, conduits, basements and other substructures for the automatic detection and reporting of gas vapors. If none are found acceptable, sponsor research to develop such detectors.

Mrsparision	Itcmulen ermet 2. Wovermant heesssion in.	
4. गाह क्या घहाहा० Prolim beetlemt lequrt--Colvila cae of mest Fridele. Inc., Cheriestom, Meat Vrgide, Ducemere 2, 17 1.2 atimer(s)		$\begin{aligned} & \text { 3. aport } \\ & \text { Aneret } 21 \\ & \hline \end{aligned}$
		6.perronam orgentratcon code
 Enctomil Irmportation safety Board Burem of sirfece tranportation safety vachenton. D. C. 20591		
		11.contrcet or srant mo.
		13. Ppe of lapport end Period coverst
 MATIONN TRUSPORTATIOM SAFETY CONDO Meshington, D. C. 20591		
		14. [ponsorlmingency cin
T5. Supplantory Motes		
This suport coacalis Pipelime Safoty lecomendatione R-N-29 through R-N63.		
Thapertace milef elrat pargoos, injured two others, and destroyed a house on chat outhirce of Chrimeoa, W. Va. Mre, fueled by mineral gas chich bed saturated the coll, hater stadiliad hitafly in the ground around the hovee. After the acelocent, two pit-hole the lentere 11 foer from the house and 1 foot from the concrete trim reny Nideh led the gas min or lacerrupline sorvice to any othar customert. The Matloanl Irasporiacion Safety Board deterndees that the probeble came of che crplocion and fire was the fruition, by an unknom source, of an wocuralation of menel briek wemer. Contributise to the accilcus odora to the gas company or to the fire cepertment. Gee piph a recurrepre of a aceldeat of chis type.		
77.iay pords Correalen, Hehole Len, Cen Migration, Pomatien, ancens Eheation, cas Lint Eurng, Cacholle Freo cestion, ou Pipelimes, Cas-funlef Pire.		W.Distrimiton statemis Thie torement in evalleble to tho phile aremith the Mationel Tectadeal Informtica serviee, gringtial. Va. 22151

00 Cldit

1. The cource of the motural gas chich had necumintel in the air apmee beven the old meol mew cille of the houe onf in the roll mear the
 tith lave.

2. Ihe two lede cecurred besuec of corroelon of the bere, eatholic-

 vell all of the older. Bre phelloes heve been catholiceliy fre cested and are evocked lot lenkige freparatis.

 trent of $49 \mathrm{Ci} 192.615(1)$ requater the ducation of th givis to recopelse ad repert gat encemele.

roomile caus

Th Hational Iramportation 8 faty Loard foternimeo that the probel 1 coupe of the riplorion and flre vas the Lention, by an mono couree, - cecturiation of mitural gas vilch had leaked fro two corronion ble in amart $2-1$ meh gat giln.

Contribating to the intenelty of the oncuing fire vas the inge
 cricinal ecterior mile of the boum and a mar enterlor briek mane.

Comeributin to the secifent vas the faet that mom of the Jletim reported riviocely letceted gas odors to the gas conpary or to the fire Apartian. Thi was partially the remit of the lact that the gas eem
 metonl meterial mot rooded by the costont and did mot laform the custcmer of the poselble coasequepce of fallure te suport a gat alder to tio gat enmpery ot to lew the pridead.

5ocerainitos

2. Th offlee of Fpeline Iafoty of the Bepertmat of Iramporteo
(a) Luad 45 Gr section 152.723 to rearire more fropant ink suringe on older, ercontel, and eatholically mpotectel glpeline thea required currently. Cuecomilation to. 874-2n
(b) Arod 49 Cl section $182.615(\mathrm{C})$ to better define dive incent of a proble ducation progre to morn againgt tio full ranso of hasarde of mitural sae, to repore rocalonble and precifle inatruction and picuand of hou to deccet marale. Nat to io, and tio cetion is mecmary. (hecommention E. $-7(-30)$
 Comitteas
 to conduet leatage morvise marlow trpee of fin. Then

万19. (incomadation Yo. 8, X4-31)
(0) Dowiog gudellme to all Hpalim operatore in focernints
 (tecommalation IV. ($-7(32$)
3. In implea can secolation (MFD):

 mats, col other oustructuree for the reutcmetle docection and go porting of naturel gea vepors. If aow are found soceptnble, sponeer

4. Columic cac of went Mrgivie, Ins.i
(a) Confuct more frequens leak detcetion orw on thone areng where the ses plpolines are old, unconted, and cathodiealiy mprotected. (lecommadation llo. P-74-3N)
(b) Initite a more intmee gcourtl pobile an gac cuptomer informelion pryren as to themerre, characterlectes, and hararde of matural gat ad the stept to be twea then it is cocoutcesel. Recommodation Io. (-7h-35)
(c) Infliate a thorough ourvey to deternim the areas of setine eorrosion de the witre leagth of thie 2 -Inch ges maln from ite fuaction rith the 3-1reh gas min at suherf Fork ond uldix plpes in lea eyaten. Mke mepavitiou for the phyical creudnatloa of theen pipes shem indicated by in
 Whea flodshed, place thete plpen Eader sequate eathoilic Frotection. (lecommation $50.2-7636$)
BI mis miow musicamion surty song

181	30fin E, EPB
	chinma
101	Pungis E. MPAMAS
	Sinber
101	
	7-3x
101	MmLEMR MIS
	Finter

 Enert.
nane 25. 274

NTSB-PAR-74-5 PIPELINE ACCIDENT REPORT- WASHINGTON GAS LIGHT CO.,
BOWIE, MARYIAND, JUNE 23,1973

This report describes and analyzes gas explosions and fire which occurred on June 23, 1973, in Bowie, Maryland. Gas had leaked from a crack in a high pressure plastic service line. Three occupants of a house were killed and a fourth was seriously injured. The house was badly damaged and houses in a five-block area were evacuated.

The gas had evidently been leaking for several months prior to the accident, building up into a reservoir of underground gas.

The NTSB determined that the probable cause of the accident was the ignition of gas that had leaked from a stress crack in the $\frac{1}{2}$-inch plastic pipe. The pipe had cracked because an occluded particle, lodged in the pipe during manufacture, had created a stress point and weakened the pipe. Contributing to the accident was the lack of odor in the leaked gas when it reached the house and atmosphere.

R\&D CONSIDERATIONS

1) Determine whether occluded particles during extrusion are a significant safety problem.
2) Study the flow of natural gas through various basement walls and floor materials and through various types of construction. The study should include effentive methods of sealing the space around underground lines and ducts where they enter a building, and methods of permitting gas to escape in the oper atmosphere when conducted to these entrance areas.
3) Develop an improved odorant with high priority given to the problem of soil adsorption of odorant compounds.
4) Study the natural gas permeation and migration phenomena in various types of soil and under paved surfaces. Based on the results of this study, recommend the use of certain types of soil for pipeline backfill material that improve the venting of gas to the atmosphere with a minimum of permeation or migration effect

Conklicions

Th Inctonal Irmaportation safery Bone coneludes thats

2. In coelalef parelele foref in the vall of the flicd plpe feeme

arm ill mot coment mificiont oforent to mike the gas detectable.
 Urreuntle coll tha the gat laked frow the burrice lime.

 froper adorant frotection of the poolice thin forolidge to acerre ertbetion greter.
 proticien in platete pipe poen a ofgificant afety problen.

 - Ficalin fafety's tuarlede os eppeovel.

TMOMRE CADE

IT Inetomil Irampertation lafety Board deternimed that the probeble -ong if in acidint mas the ifultion of ges that had laked from atrena

[^5] nocciele hat cresed a eprese point plpe cracked beaun an oocloded .- .
 st sement the houses and the atroophere.

15coneraitions

The Mellowl Ireasportation safoty boerd recomende thets

2. The oftice of Pipelfm safoty of the Departimat of Irameportections
(a) Repolre plpellin operatore tho use meterlels mot speletcally coveref is the Federnl rigulations to formily edrice the aperitinat of traneportation of lts eee. Qecompedation Mo. 2-74-37
(D) In ite stub of plastic plpe, doternine vhethor oceloded pare
 If to tound, take mecensary regulatory action to eontrol thet poblem. Cecomennetion 10. F-74-38)

(C) Stuty the flow of antural gas through vartous basment wall and sloor anteriale and through verious types of conatruetion. Im etedy should include offectivemethods of cenlins the appee cround maderzround mellity liset and ducte where they miter a indluist, ene mots of pernittine ges to meape in the apme

(a) Deviop suidelimes to aselet pipelide operators to minenda asapuate prolic protection in arens viere odorant adsorption H coll could oceur. Qecomendation Mo. R- M-40)
0) Dovilop suldelisoe for the semplize of conburetble gases to assure properr conceatrations of odor ant as requirnd is 45 CR $19.625(5)$. Recommation Mo. R-74-41)
(3) Doviop guedelisen to asist pipeline operatore in trainiar Wher remeders and othere who work at customers' prodione to cetece misutation arous chat adghe be an indicacion of gat zeckrye. Cecomendation 10. (774-42)

4. Ine maricea Gae Aescelations

(a) Cive a beth priority to the proble of coll atsorptica of alop-

(3) Give eosidaration to mamuring the odorant level of gas eacepp in froe underground leake in its plamed research on odorant

(c) Dewiop methods of teeting solis to deterdne the potential affect ea dorante. Recomendation No. P-74-45)
(1) Stuit the metural gas permeating and agration phenomena in vero lom types of 8011 and under paved aurfaces. Based on the ree belte of thes atudy, recomsend the use of certaln types of coll fer Plpelia backfill mierlal that will ald in allowng leckins ses to wat to the atmosphere at the leak location with a alni-- permatlon or eigration effect. (Reconmendatlon Mo. Fo74-46)
3. In Dacionl Fire Frotection Aseoclation:
(a) Mifee fireficheing perconmel of the phenomenon of asorption of gas oforant corpounds by certain types of coils. They should be rended oi the meed to use combustible gas indicators when atcempts are betre made to detect the presence of leaking gas. (Resommedacioa 1io. 874-47)
6. The Bachirgton Gas Light Compary:
(a) Comeloce ite efforts at the accident aite to dissipate the resifunl gat reainise in the ground.
D) Coathree to monitor and test che affected homet ia che aren for tio presence of gas until wo further hazard from the residual gat is eppercat. (Recomendacion No. Pr74-48)

It II MITON THSTGTATION SNETY BOND

/8/	JOHS H , LEATD
	Chalrman
181	PRANCIS E, MCADNS
	Hamber
181	LOUS M, THAYES
	Mriber
181	IRABCL A Puges
	M-Sar
181	MRLTAK R, ENEY
	Meber

NTSB-PAR-74-6 PIPELINE ACCIDENT REPORT- MID AMERICA PIPELINE SYSTEM ANHYDROUS AMMONIA LEAR, CONWAY, KANSAS, DECEMBER 6, 1973

This report describes and analyzes a pipeline rupture in a rural area in Kansas and the release of 2,138 barrels of anhydrous ammonia, a volatile, toxic substance. Two persons who had driven through the ammonia vapors were hospitalized.

The pipeline dispatcher remotely started the anhydrous ammonia pump station and then remotely opened the line block valve. The valve failed to open, however, and the pressure increased on the entire system. A 12 $\frac{1}{2}$-inch rupture occurred in the pipeline.

The NTSB determined that the probable cause of the rupture was the abovenormal pressure in a section of pipeline which had been weakened by previous damage (20 -inch gouge) by outside forces. Contributing to the above-normal pressure was the failure of the dispatcher to insure that the line-block valve was open after he started the pump, and the delay in shuting down the correct pipeline.

R\&D CONSIDERATIONS

1) Develop a more specific inspection and repair program of the pipeline system pressure recording devices.
2) Institute a more systematic approach to understanding and controlling hazards including the full life cycle of the pipeline system, the design of new pipelines, and the operation and maintenance of existing pipelines.

 Anyurowe mpala, Plpe Bent, Plpe Couge, Over Preos serumemation, lemote Valvo closure, Remote seation 		W. Usintivica statempt Thit docurnk lo surl ato Etional rechalcel ruforeso Vicgine 8251	
	20. Beurity classi/testen (of this pesp) uncuassified		$\begin{aligned} & 2.7100 \\ & 7.75 \end{aligned}$
(200 Poen 183.2 (107. 9/74)			-

concurians

 groten vei not adequitely controlled or moultored at the tin at the Comany cecident mor at the tim of the Hutchinson sceldent.
2. The plpeilne at Conimy ruptured in a previousiy dane mention of plpe then it var subjected to higher-thao-romal preseures.
3. In falled pipe at Cornty had bean danaged forint the eon struction of another plpeline, but the damage had not leen reported to *... Mrco becever of Inaffectin inopection.
4. Since the borger atation priseure reconder uat partially inop
 the axset prestura at the polat of rupture and to verthy the length af chat that lorger purped agalnet the closed valve at Cormy.
S. Alhough ia the Couray moeldent the block valve at Corivy vae rported to hre been initiated to the open position and it falled to cea, 5 reacon for the failure to open could be found, and no repalre to the greter ware mila.
6. In viatble vipor eloud in the Cormy eccident lato rhich the tructe mare frivea was not pure armonia, beceuse concentration of 0.5 wreat woald hew baen lothal to both truckdrivars. The vapor cloud mobely conelated motly of meter rapor produced by condensation from the atr, chllled is apension and viporivation of the high-preseure MB3.
7. 2nco idd not eet in conformace wh Pederal regulation 49 G. 153 in that it did mot report this accident by telephona and it did not hw a conmications gyeten that ingures the tramemision of informthen repured for the eafe operation of ita plpeline ayetem.
8. the Federal regulation, 49 CFR 195.260, Valves: Locetho ($($). Is Fague and difficult to enforce, because it pernits each fipelle operator to the the juise of the adequacy of velve epacing.

TROBABLS CAUSE

Tha Nationi tranpportation safety Eourd deterndines that the probeble ane ot the plpeline rupture at Conva val the above-normal pressure on a cection of plpe which had bean makened by provious dumage by ortilde forcen.

Comerfactis to the abovenormal pressure was the fallure of the Anpacober to loerre that the Ling block valve at Consay vae open after in etrited the pitp at Dorser.

Contributins to the ame of anhydrous acmode spilled were the dely in shutelng dom the correct plpeline, the diatance betwen line blok nelven, the tin taken to minily close the ecisting block vive, and the ldehly wiatele characteristics of the eccaping product.
contributin to the deley in shuttin dom the correct pipeline was th lint of eng presporn-sasing dovices on the upatram alde of the lise

Rcompaparzo:

Th Intlomi Tramportarion safoty Bomed recomands that the offlce of Impline safety of the Department of Tranoportatlon:

1. In Ite mpoodn rulemkin action for the eransportation of
 amonie plpeling syaten. Particular emphasis shovid be placed
 greten, more closely epmed valves, and more remotely ar ento

2. In tes comelferation to chen remintory actlon concerain the methode of hadilnis, contaloins, and llepoolns of liquatid petrolur cates, includa hin. Incescasy informition chould be ob calped from the ors atudy on hichly volatile, toode and/cr core
 cocount surh erternal factore as mather conditions, lan! atte the loent and popelation denalty. Attention chould be idvea to of the cecmiperature inverilome caused by the rapld cipasaloa nat and atr blowrs to force the urs ue of extacnally applied上ete. (hecomandation $10.8-74-51$) If
3. Aman CR 49195.404 (b), Mape and records, to provida tore reasure recordin instrumats to be inctalid and properiy min calned at ach pomp station and cech pipaling terndmal and chat last 3 yerre. pressures be ratalsad at a contral location for at
4. Amad 49 CR 195 to requetre llquid patrolean plpelime operatore So cablish lialson vith appropriate poblic offlelale, ineluily treten police officiels, to better inform then of the charmeter. these rewletione of 11 quid petrolern and related producta. ofllar to those thich eppelede ambodrous aroais apd atovid be ratural and Ocher Gas eppear in 49 CRI 192, "Traneportation of

5. Requife the Med Anorlea Hpe Line Compan toos
(a) Inprove lte curreat mitten procedurea under 49 Gn sectico 195.402, General requiremate, to require that ippatehne perform detailed moittorins of all pointe on a plpeling getem

(6) Check the instrymentation at all etations, terndonis and con trol polnte under 49 Cr section 295.402 and mike ohanten or adition as measeary to protect this plpallm ogete chater overprecoure. ($0-2$-55)
(3) Ravaluate thair traidel progran fot inopectore an thatr lespection procedures urier 49 GR' 195.204 , Inspeetion
 72-1 and 1 (a) of min8-p12-73-4

Beaprel, to facrean the probabllity that demage to thels

(d) Initiate a progran for emre epecific lnopection and repalt peogran of the pipeline syitem preseure recording divicet under 49 CRR 195.402 so that they 111 operate as deelfoed asd lateoded in a more rallable fashion. (0-74-57)
(o) Revie the operations of the plpeline gyete in the lide of 49 CR 195.402 to institute a more gistematic and authoritativ apprasch to under standin and controllin havarda. This revier ahould cover the full life escle of the pipaline syete and be applicable to the dealen of gm ipplinat, as wall as to the oparation and mintenance of

IT Dis mitionl thusportation safity sond

181	SOHN H. 2 EDO
	Chairman
/81	PRavcIS R, Meapurs
/8/	LOUIS M, THAYER
	Member
181	ISABEI A. BURGESS
	Member
191	WILLIAM R. BALEY
	Mrber

8. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1975

The following are the three pipeline accident reports published during CY-1975.
\(\left.$$
\begin{array}{cl}\text { NTSB-PAR-75-1 } & \begin{array}{l}\text { Pipeline Accident Report - Michigan - Wisconsin Pipeline } \\
\text { Co., Gas Transmission Line Failure, South of Monroe, }\end{array}
$$

Louisiana, March 2, 1974\end{array}\right\}\)| NTSB-PAR-75-2 |
| :--- |
| Nipeline Accident Report - Transcontinental Gas Pipeline |
| Corp., 30-inch Transmission Line Failure near Bealeton, |
| VA, June 9, 1974 |

NTSB-PAR-75-1 PIPELINE ACCIDENT REPORT - MICHIGAN-WISCONSIN PIPELINE CO. GAS TRANSMISSION LINE FAILURE, SOUTH OF MONRDE, LODISIANA, MAFCH 2,1974

This report describes and analyzes a natural gas pipeline accident near Monroe, La., on March 2, 1974. A 30-inch coated, wrapped, and cathodically protected pipeline failed at a girth weld inside a 34-inch casing pipe under a highway. The escaping gas ignited immediately resulting in a fire which consumed 10 acres of forest, but caused no deaths or in juries.

A pressure operated safety valve 1 mile upstream from the failure activated and closed immediately, blocking the flow of gas from the south. However, another safety valve 17.1 miles downstream from the failure did not close and gas continued to flow into the failed section from the north at over 400 psig pressure. As a result of the rupture, over 53 million cubic feet of natural gas was lost.

The NTSB determined that the probable cause of the accident was the failure of a substandard girth weld due to repeated soil stress.

R\&D CONSIDERATIONS

1) Conduct an industry-wide survey on the value of casing pipeline under roads and railroads.
2) Develop guidelines for the effective operation of automatic valves.

T. mport 3. NTSR-PAR.TS. 1	on io. $-804-98$		
4. Itio en mite Pupeline Aceldent Report -Michiean-wiscoasla Pype Line Company, Gae Trane. misifoa Lie Fallure. South of Monroe, Loulslana, Mand 2 IR1 7. Wither(s)			
		6. Wrioram orgmientannepore mo.	
3: Furform wemizationtine on ludress Natioal Tramaportation Safety Board Bureaw of Surface Traneportation Safety Vashington D. C. 20594		$\begin{aligned} & \text { W.Work this wo. } \\ & 1494 \\ & \hline \end{aligned}$	
		11. Contrect or trent wo.	
		T3. Type of heport max Pariod Covered Pipeline Aceideat Report March 2, 1974	
MATIONR TBASACTATIOM SAFETY COMD Mesinimgton, D. C. 20594			
		Th. Sponsorling haency cote	
15. Supplantary motes This report contains pipeline safety recommendations P-75.1 through P-75-4			
W.Mestrect This report deseribes and amalyzes a natural sas pipeline accident mear Monroe. Le. © Marel 2. 1974. A 30 tinch pipaline falled at a girth wald inside a cating under a bighway. A sesulting fire buraed 10 acret of forest, but mo deaths or ingaries resulted.			
The National Traasportation Safoty Board determines that the probable eause of the accident wat the failure of a subetandard girth weld due to repeated soil stresses.			
Comeribucias to the fimposed atresses were the position of the pipe tuside the casing and the beary clay soil surpounding the pipe at each end of the casing.			
Recommexdations are made to determine the effectiveness of using castag for pipeliaes beasath highways and rallroade and to develop guidelines for the effective operation of mutomatic valves.			
n-13 sivic m man			
Casing Veate and Seals, Pipeline Casing, Cerrier This document is avellable Pipe Amtornatic Valves, Pipe Rupturie, Blow Down, to the public through the Yalve Crossorers, Looped Lises, Clase Location, National Technical baforma Chrth Well Fallere, Weld Undercut tion Service, Springifeld, Virgtala 22151			
	2:. Seurlit clessitienten (of this pege) uncuassificd	21.00. Of Pax	22.71e

CONCLUSEAB

1. The plpolime fan of becsese of a subatasdand girth vell wich ree undected durias coastruction in 1956.
 fo eompliance with the Federal regalation for valve apacing. Wi too for from the dallure site and too coarsely det io setwate on the orespure dron which occurned when the lime falled
2. A carrlor plpe wih heavior malle had been inscalled at the rond croselag lastead of casing plpe, the fallure might mot have eccurrod.

PROBABLE CAUSE

The National Trensportation Safoty Board determines that the probable cause of the eccidint was the fallure of a subotendard girth and the to repented soll stresses.

Contributing to the imposed stresses wrere the position of the ptpe halde the casing and the heavy clay soll surfundiag the plpe at each and of the casiar.

RECOMMENDATIONS

The National Iransportasion Sa'ety Board recominonds that the Orice of Pipeline Safety of the Dapartment of Traseportacion:

1. Conduct an iodustrywide survey on the value of casins pipeltaes beneath rueds and rallroads. This surver should be andertaken in cooperation with the Americaa Arsociation of Sease Righway and Transportation Oricials, The Foderal Fighway Administration, appropsiate industry associations and agineering sociedes; and 49 CFR 112.323. Cashas. should be ammoded, I mecesary. (Recommeodation P-75-1)

2. Require the Michigan-Wiscoash Pipe Line Conpany toc

(a) Recalibrate the pressurodrop settings on thair oxisting amtomatic valves to better insure their actuation on pressure drops caused by line fallure. at required Ender 49 CFR 192. 745, Valvo Malx se Tramanission linas. (Recommendation P-75-2)
(b) Conduct testa aloag Ita pipoline system (tucluding cesing locections) in areae of severe soll swell poteatial and take approprimte corfective mosaures to preveat almilar faliares from wecurring ae required under 49 CFA 192.705 Tranoportacion limes: Patrulling. (Recorninudation P-753)

The 8afoty Board further zecommende that the AsME Cas Piphes S:ondarde Committee:
3. Devolop guidelines for the use, anting, and mainteance of autommic valves on sas transmission pipeline syotems. (Recommendation P-75-4)

NTSB-PAR-75-2 PIPELINE ACCIDENT REPORT- TRANSCONTINENTAL GAS PIPELINE CORP., 30-inch TRANSMISSION LINE FAILURE NEAR BEALETON, VA, JUNE 9,1974

This report describes and analyzes a 30 -inch natural gas transmission pipeline rupture and resulting fire in a rural area near Bealeton, Va. Gas escaped at 718-psig pressure and ignited within seconds, illuminating the countryside for miles. Flames were seen and reported by airline pilots over 100 miles away.

One automatic valve 10.6 miles downstream of the accident, failed to close when the pressure dropped. A second automatic valve 15.26 miles from the first, also failed to close. Although no one was killed or injured, the accident would have been more catastrophic if it had occurred in a more densely populated area.

The NTSB determined that the probable cause of the accident was the material failure of the 30 -inch pipe because of a hydrogen stress crack at a hardspot in the pipe wall. The crack progogated along and around the pipe for 55 feet. The hardspot had probably been created during manufacture. At the time of construction, the pipe was coated with a hot tar enamel and wrapped in fiber glass reinforcement and asphalt-impregnated felt.

R\&D CONSIDERATIONS

1) Initiate a study of the effects on automatic valve operation of open versus closed crossover valves on looped natural gas transmission systems.
2) Review the use, maintenance, and testing of failure alarm systems on gas transmission lines. If necessary, reevaluate and redesign these alarm systems

COHCLUSIONS

1. The pipeline fallure vas caused by bydrogen atrese crack at hardepot ubich vae produced in the steel at the tiae of eanufacture.
2. Atonie hydrosen formed by electrolytic action reacted With the hardspot through defect in the protective pipe coating and initiated a strese crack. The electrolytic action ras provided by the molsture in the soil enrrounding the pipe and the electric current vhich vas part of the cathodic protective syiten.
3. The antomatic line valves upstrean and dovastrean of the rupture falied to operate because the presaure drop settir vere too coarse and because the large dianeter crossorer lines were opea at the time of fallure, which teoded to equalise the pressure acrose all three lines and nitigatec the effect of the pressure drop.
4. The autonatic valves on the tramsco sjetea, vhich vas operatias under full loop vith open croseovers, were ciflikely to close on a preseure drop caused by looped transeiasion sinilar automatic valves on full crosever valves. \quad opereting vith closed
S. Conpressor atation 180 personnel ordered the vroas Valve to be closed because they erroneously analyzed the prasure drop iodicatione and because the line failure alare did not operate.

pROBABLE CAUSE

The Eational Transportation Safety Board determines that the probable cause of the accideat vas the failure of the 30lach pipe because of hydrosen stress crack propagation at bardepot in the pipe vall. The hardepot probably had been created during the pipe manufacture.

RECOMEHDATIORS

The Mational Traneportation Safety Board recomende that the Office of Pipeline safety of the Department of Tranaportation:

1. Initiate etudy, in cooperation vith the American Gae Aseociation (AG.) and ocher interested groups. of the effects on cutomatic liae valve operation of open versus closed crossover valves on looped tatural gas transeission eystems, and amend 49 CFR 192.179. Transifision liae valves, to incorporate the findiage. (Recomendacion P-75-7) (Class II)
2. Eeviev the use, eaintenance, and testing of failure clarns on sas transmision syetesend anend 49 Cfi 192 to provide for improved varaing of pipeline failures. (Recomendations $p-75-8$) (Clese I)
3. Lequire TEALSCO to:
(a) Eeviev lie emergency procedurea for the entire pipeliac syiten, using eysten eafety analyais techniques, and correct any mareliable or lasdequate shutdoun processes. (Reconcesdetion P-75-9) (Clese IL)
(b) If aeceseary, reevaluate, and redesiga their compressor etation fallure clares on the eatire transeiseion syiten to prevent a recurrence of the equipment tallure. (Reconendation P-75-10) (claes I)
(c) Examime the necessity of iastallias addicional pipelime fillure alarin on the station recordiag uction and discharge pressure sage, the station recording fucl pressure sage, the ctation fual flow gege, or the other presigere

ET THE MATIOMAL TRAMSPORTATIOM SAFETY BOARD

> /B/ JOKY R. REED
Chairman
/s/ FRancis i. Mcadahs
Menber
/s/ LOUIS M. THAYER
Member
/e/ ISABEL A. DURGESS
Member
/s/ UILLIAM R. GALET
Meaber

May 28. 1975

NTSB-PAR-75-3 PIPELINE ACCIDENT REPORT - SOUTHERN UNION GAS CO., TRANSMISSION PIPELINE FAILURE, NEAR FARMINGTON, NEW MEXICO, MARCH 15,'1974

Om March 15, 1974, a 12 -inch natural gas transmission pipeline ruptured in a desert near Farmington, New Mexico. Natural gas at nearly 500-psig pressure escaped, ignited, and burned several hundred feet high. An 8-foot section of the 12-inch pipeline blew out, digging a crater 40 feet long, 17 feet wide, and 10 feet deep. Three persons driving in a truck down a service road adjacent to the pipeline died.

The NTSB determine that the probable cause of the accident was the brittle fracture of a longitudinal flash weld that had been weakened by localized crevice corrosion. When the pipe was installed in l948, it was not required to be cathodically protected but this would not have prevented crevice corrosion. The gas may have became ignited by the truck as it drove near the rupture site.
$R \& D$ CONSIDERATION

1) Determine if an internal inspection tool could be utilized to detect defective flash welds.
2) Determine if longitudinal weld failures constitute a recurrent safety problem.

CONCLUSIONS

1. The New Mexico State Corporation Commission and the Southern Union Gas Company considered the failed plpeline to iave been operated in compliance with the Federal corrosion itandards, but the Office of Pipeline Safety did mot. The regulations concerned were vague, so two incerpretations were possible.
2. The presence or absence of cathodic protection on the plpeline at the point of crevice corrosion probably would have had no effect on the fallure. Crevice corroilion is not preve ited by cathodic protection.
3. The crevice corrosion in the lash weld reduced the overall atrength of the pipe by reducing the wall thickness; this caused higher-than-normal stresses in the weld line.
4. The fallure originated where the erevice corrosion had a extended across the pipe wall, weakening the weld over a oufficient length to initiate a fracture aloag the weld.
5. The plpe falled before the truck was in the area, but the sas was not ignitod until after the truck was near the failure.
6. Although other sections of the line had been pressuretested recently, the failed pipeline had not been pressure-tested since its manufacture in 1948. At the time of the accident, pressure in the line was colly 35 percent of the mill test pressure used at the time of manufacture.
7. The "grandiather clause" in the Federal regolationa, under which the marimum allowable operating pressure for ald lines is established at the highest previous operating pressure, permitted this line to be operated with a zero safety factor for pressure.

PROBABLE CAUSE

The National Transportation Safety Board determines that the probable cause of the accident was the brittle fracture of a longitectinal lash weld that had been weakened by localized crevice corrosion.

RECOMMENDATEONS

The National Traneportation Safety Board hat made two recommondations based on its investigation of this accident, ane to the Department of Tranaportation, and the other to the Southern Union Gas Company. (See Appendixes B and C.)

M11 coly be operated to a maxima pressure of 365 psis, it appears that 0 other severely weakened flash melds existed at the time of the teats. Let sire crevice corrosion could continue, despite cathodic protection efforts, failures could result in the future.

Experimental work has been conducted by several firms to develop a internal inspection tool which could detect longitudinal weld defects. Wile this tool has been perfected for most longitudinal sean defects, the excess metal left in the veld area in A. O. Saith flash veld pipe is so great that it has a tendency to ask out any signal which mould lodicate defect. Additional testing and refinements have now resulted in a tool which aa be able to detect the type of defect which resulted is the flash weld failure.

Therefore, the National Transportation Safety board reromenda that the Southern Dion Gas Company:

> Bork with developmental manufacturing firs to determine if an internal inspection tool could be utilised to detect defective flash welds in its Farniogton-Albuquerque pipeline system. If a tool is found effective, it should be med in areas where crevice corrosion could be expected. (Recommendation P-76-2) (Class II. Priority Followup)

REED, Acting Chairman, MADAMS, THAYER, BURGESS, and RALEY, Members, concurred in the above recommendation.

APPENDIX C

Therefore, the National Transportation safety Hoard recommends that the Department of Transportation:

> Review all pertinent data such as leak and failure reports abalcted by all pipeline operators to determine if longitudinal weld failures constitute a recurrent safety problem, and take appropriate regulatory action if they do. (Recommendation T-76-2) (Class II. Priority Follows)
 concurred is the above recommendation.

8-12
9. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1976

The following are the eight pipeline accident reports published during CY-1976. No special studies have been issued during this period.

3S-PAR-76-1

SB-PAR-76-2

SB-PAR-76-3
'SB-PAR-76-4
[SB-PAR-76-5
[SB-PAR-76-6

TSB-PAR-76-7

ITSB-PAR-76-8

Pipeline Accident Report - Texas $0 i 1$ and Gas Corp., 6-inch Natural Gas - Gathering Pipeline Failure, near Meridian, Mississippi, May 21, 1974

Pipeline Accident Report - Consolidated Edison Co., Explosion at 305 East 45th Street, New York, New York, April 22, 1974

Pipeline Accident Report - Mid-Valley Pipeline Co., Crude Oil Terminal Fire, near Lima, Ohio, January 17, 1975

Pipeline Accident Report - West Texas Gulf Pipeline Co., Abilene, Texas, December 11, 1974

Pipeline Accident Report - Dow Chemical U.S.A., Natural Gas Liquids Explosion and Fire near Derers, Texas, May 12, 1975

Pipeline Accident Report - Nebraska Natural Gas Co., Pathfinder Hotel Explosion and Fire, Fremont, Nebraska, January 10, 1976
Pipeline Accident Report - Sun Pipe Line Co., Rupture of 8-inch Pipeline, Romulus, Michigan, August 21, 1975

Pipeline Accident Report - Standard Oil Company of California, Pipeline Rupture, Los Angeles, California, June 16, 1976

NTSB-PAR-76-1 PIPELINE ACCIDENT REPORT - TEXAS OIL \& GAS CORP, --
6-INCH NATURAL GAS-GATHERING PIPELINE FAIIURE, NEAR MERIDIAN, MISSISSIPPI,
MAY 21, 1974

At 9:45 p.m.,on May 21, 1974, a 6-inch pipeline that was gathering natural gas from several oil wells, ruptured about 12 feet from a paved road near Meridian, Miss. Hydrocarbon-rich gas, escaping at 300-psig pressure, blasted a 10 -foot diameter, 6-foot deep crater near the road. Three persons living nearby heard the roar of escaping gas and drove to the leak site, where they saw a white, low-lying fog and smelled gas. They then returned to their house to evacuate the rest of the family. The family drove back to the paved road in two vehicles, both of which stalled as they approached the leak. A third vehicle, approaching from the opposite direction, also stalled close to the rupture site, its four occupants attempted to get out of the area on foot. The escaping gas then ignited and killed one person at the site. Of the five persons hospitalized, four died. The three vehicles were destroyed and about 40 acres of woodland was burned.

The NTSB determined that the probable cause of the accident was the rupture of the 6 -inch pipe which had been weakened by internal corrosion and hydrogen embrittlement as a result of poor operating practices. The pipe was 4 years old and was coated externally and wrapped. No cathodic protection had been applied.

R \& D CONSIDERATIONS
 No $R \& D$ requirement

CONCLIISIONS

1. The G-inch pipe falled because its wall had been thinned by severe latermal corrosion ald had been veakened further by hydrogen
2. The internal corroaion vas caused by an accumalation of vater in the botion of the pipe which comoined with the hydrogen sulfide and carbon diozide in the natural gas and formed an acid.
3. The corrosive conditions reasined inside the pipe because of the infrequent acraper operations and the inadequate iahibitor practices and the iafrequeat iaspection of the corrasion coupons.
4. The location of the longitudinal seam veld at the bottom of the pipe, in contast with the corrosive elements and the hydrogen culfide, further veakened the $p \pm p e$.
5. The improper operation of this pipeline, both in detecting and in titigating the corrosive conditions in a timely manacr, allowed condilions to exist which ultimately caused the pipeline's fallure.
6. The Secretary of Transportation has not issued Federal regulations for gas-gathering lines in rural areas to control the possibility of sinilar pipeline fallures.
7. The source of ignition of the gas in this accident could not ve
deternined.
probable calse
The Mational Transportation Safety Board deterained that the probable cause of the accident was the rupture of the pipe which had been veakened by internal corrosion and hydrogen embrittlement as a result of poor operating practices.

RECOMENDATIONS

The Mational Transportation Safety Board has ade five recomendations based on the investigstion of this accident. One is addreased to the Office of Pipeline Safety Operations of the Department of Iransportation Cad the others are to the Texas 011 and Cas Corporarion. (See Appeadixes

Emerefore, the National Transportation safety board recommends that the Department of 5 ransportat . .

Promulgate regulations under the Hazardous Materials transportation act for natural gas-gathering pipelines in rural areas, similar to the regulations promulgated for natural gas transmission and distribution pipelines in 49 CR 192. (P-76-5) (Class 1I, Priority Followup.)

Resp, Doting Chairman, MCNDAMS, THAYER, DURGESS, and bury, Members, concurred in the above recommendation.

APPENDIX D

Therefore, the national Iransportation safety Board recommends that the feral 011 and Gus Corporation:
(1) (a) Establish a periodic scraper program and install ap propriate hydrogen probes, test coupons, resistance probes, or other testing equipment at strategic locations to identify and locate internal corrosion problems, (b) axaulo the test equipment and analyse the scraper residues carefully at regular time inter vale to monitor the internal condition of the lines. : if (c) take necessary action to repair deficiencies i and in the pipes and to improve operational procne cures for the prevention of corrosion and hydrogen cobritticment. (P-76-6) (Class I, Drgent Followup)
(2) Deisinine the correct frequency, types, and mounts of inhibitor end the proper infection point e 20 that further internal corrosion can be deterred. (P-76-7) (Class I. Urgent Followup)
(3) Instruct its employees on the importance of proper operation and maintenance of scrubbers and separators to prevent water from entering the pipelines. (p-76-8) (Class I. Urgent Followup)
(4) Install pipe used in the construction or repair of its gathering lines with the longitudinal seam on the top half of the pipe. (p-76-9) (Class III, Longer Fern Followup)

REED, Acting Chairman, MCADNMS, EMAYER, BURGESS, and BNLEY, Members, concurred is the above recommendations.

NTSB-PAR-76-2 PIPELINE ACCIDENT REPORT - CONSOLIDATED EDISON CO. , EXPLOSION AT 305 EAST 45TH STREET, NEW YORK, NEW YORK, APRIL 22, 1974

At 6:57 a.m. on April 22, 1974, a massive, low-order explosion demolished the west wall of a $25-$ story conmercial building in New York City. No one was killed, but over 70 were injured, mostly people in an adjacent apartment house.

The NTSB determined that the probable cause of the accident was the rupture of an overpressured hydro-pneumatic tank in the basement, which rocketed upward and tore a 6 -inch overhead gas service line out of its threaded joint. The service line was connected by only two or three threads instead of the nine required by code. This allowed gas to flow unabated into the building above. Contributing to the spread of the explosive gas-air mixture were the elevators, which drew the explosive mixture up through the elevator shafts before ignition.
$R \& D$ CONSIDERATIONS

1) Determined the availability, practicability, and the state-of-the-art in the manufacture of excess flow valves for use on low-pressure gas distribution systems.
2) Investigate the practicability and the availability of gas vapor detection instruments for installation at strategic locations in buildings.

TECHICAL REPDRT DOCNEMTATIOM PAEE

TECHICAL REPORT DOCNTMTATIOM PAES		
1. Tite and subiligle Pipeline Accident Repurt -Conacildated Edinon Companv, Explonion at wh keat 45th Strert. Mew York. Mow York, April 22. 1974		5.peotr bate
		Eebhewery 12, 1976
		6. Performing organization Code
7. Huthor (s)		T. Performing orgenization Repor: Mo.
3. Performing Organtzation Mame and Mdrress		Work Unit
		1745
Matlonal Transpurtation Sarety Board Burcau of Surface Transpurtation Sarety Manhington. D. C. 20594		T1.Contrace or Grant Mo.
		13.Type of Report and
12.Sponsoring Agency Mane and Address MATIONAL TRAMSPORTATIOM SAFETY BOARD Mashington, D. C. zlisys		
		Pipellne Mrident Repirs April 22. 197;
		14.Sponsoring Agency Code
15. Supplemeniary Motes		
16.nostract New York. The structure of the adjarent building was damiked and Rlise wis briken in other building- In the drea. dilass tragments and slivers wor. hliwn ontu athth 70) persions were injured.		
 upuard and tore an uvorhead gas service lime wut of ftes threaded juint: this alliwnd pas tu flow unathated into the bullding. Contributing to the sproid if the explowiv. Ras-air mixture were the elevators, which driw the explovive elviure up throush the - levalur shafis thelors ignition.		
As a result of its investigation of the esplosion, the Safeti Phard made reciom- Develupernt, the suilding officials and Ciwd Administration Intermational, Inc... the Souchern guliding cinde Congresis, and the International Assoviation of plambers and Enchaticy buliciale.		
17. Key Hords Hydrapneumatlic prensure tanks; natural Ras: excest flow valver; theaded connections; elevatorn: gan mervice lime lin'ation: gan detertion instrumenter gas-alt explonive olxture: xlasm fragmonts flre departmente: strurtural damage: pipelime aceldent: eatural gae explosion.		18.Distribution Statement
		the publice thriwesh the Rational Terhnical Inliormatiom Servire. Springiticld. Virgínia 22151
Th. Security classification (of this report) UCLASSIFIED	20. Security Classification (of inis page) UNCLASSIFIED	21. Mo. of Pages /V2.Price
liss form 1765.2 (kev. 9/74		

1. The source of the ignition was unknown, but the origin of the accumalated natural gas vas a separated 6 -inch gas gervice line the basement.
2. The service line was torn from ita threaded foint wion a pressure cank belou the line burst and hit it.
3. The service line was connected inadequately by only two or three threads inatead of the aine required by code.
4. The location of the pressure tanks directly beneath the service libe created as avoidable hazard; hovever, no Federal. State, or city regalations existed concerning the installation of pressure tanks or other havardous materials Dear gas service lines.
5. When the service lins vas installed, no excess flow equipment was frailable and practical to shut off any sudden, rapid flow of gas fro a separated pipe. Lesearch is undervay to solve this probles.
6. No instrments to detect and warn of leaking gas had been installed In chis building although such equipment is available. No regulations exist which require this installation although regulations do exist requiring instrumentation to detect and varn of saoke and fire.
7. The Pederal regulation requiring pipeline operators to be responsible for the operation and anintenance of gas piping inside buildings over which they have no control is unrealistic and
impractical.

promale cause

The Hational Transportation Safety Board determines that the probable cause of the accident was the rupture of an overpressured hydropneumatic tank which rocketed upward and tore an overhead gas service line out of its threaded juint; this allowed gas to flow unabated into the building. Contributing to the apread o^{r} the explosive gas-air mixture through the bilding were the elevators, wich drew the explosive alxture up through the elevator shafts before ignition.

RECOMPIENDATIONS

The Mational Transportation Safety Board made five recomendaciona Lesed on the investigation of this accident. Two are addressed to the Department of Transportation, one is addressed to the Department of Mousing and Urban Development, and one is addressed to the bullding Officials and Code Adainistration International. Inc., the Southern Eildiag Code Congress, and the Incernational Association of Plumbers and Mechanics officials.
E) THE EATIOMAL TRANSPORTATION SAFETY BOARD

APPEDDIE A

Ste G-inch gas varvice line in the basement vas considered by the clite of Pipeline safety to be gas distribution min and therefore uader the Pederal regulation 19 GR 192.3. The Mev York state Public service Comalesica's regulation, 16 MYCR 255.1855, mintains that the pipelise eperater" jurisdiction ends at the first fitting inside the wall of a customer's structure. This is based on the imprecticability of pipelime eperator's trying te operate and maintain thousends of feet of gas piping laside the mils and cellings of thousands of buildings within the state.

Stherefore, the Mational Iransportation safety board recomende that the Office of Pipelime safety Operacions of the Departent of fransportation:
(1) Daterrine the availability, the practicability, and the etate-of-the-art in the manufacture of excess flow valves for use on lor-pressure gas distribution systens. Based upon the resulta of these findings, mend 49 CPR 192 to incorporate the use of these valves in comercial buildings. (lecomendation $-76-9$) (Class II, Priority Follonm)
(2) 2mend 49 CRR 192 to define more reallstically an operatores zesponsibility for gas piping inside buildings. (Recomendetion P-7-10) (Class 11. Priority Follomp)
(3) Eqpedite its reviev of the study of erapid shutcon of Failed Pipeline Systers and uniting of Preseure to Froment Pipelise Failure Due to Overpreasure" and deternise rhat rugulatory action is mecessary concerning the use of excess Elow valves. (Recommendetion P-7G-11)(Class II. Friority Follonap)

2000, Chairma, Menones, Thirke, whess, and bucel, members, concurred In the bow reco mendations.

APBDIX

Many comercial buildinge are required to have moke or beat antection instruments located at strategic positions in their interior. Itree instruments are designed to activate sprinkler systens if the instrmente are triggered by the smoke or hat of a fire. It seans logical that sinilar regulations could be adopted for the lnstallation of gat detection instrumente fat buildings.

Therefore, the Mational fransportation Safoty Board recomends that the Department of Bousing and Orban Development:

Investigate the practicability and the availability of gas Fapor detection instruments for installation at etrategic locations in buildings. Rased on the results of this loventigation, recumend guidelines to appropriate state and local goverment agencies for regulations for the instaliation of gas detection instruments in buildings. (Recomenalation P-76-12) (Clase 11, Priority Follomp)
 is the above recomendations.

APPENDIX C

The location of the hydropneuatic pressure tanks directly under the gas mervice line vas a critical factor in this accident. Since the gas line was installed first around 1930, and the pressure tanks were installed at a later date, the tarks should have been located at same other point in the basement where potential danger to existing facilities would be at a Einimu. Mo Federal, New Ycrk state, or New York City regulations exist for the placement of equipment in relation to other equipment in basements. The plumbing codes also do not specifically relate to the placement of equipmeat in relation to other equipeent, but these codes for the basis for the city regulations.

Therefore, the National Transportation Safety Board recomends that the Building Officials and Code Administration International, Inc., the Southern Building Code Congress, and the Plumbing Code Comittee of the International Association of Plumbers and Mechanics Officials:

Reviev their codes to insure that adequate instructions are listed for the location of natural gas service lines in relation to other plubing facilities such as pressure tanks and boilers in industrial, comercial, and reaidential buildings. (Recomendation P-76-13)(Class II, Priority Follounp)

TOOD, Chairnan, Mcadais, thayer, Eurgess, and haley, Members, concurred in the above recommedations.

NTSB-PAR-76-3 PIPELINE ACCIDENT REPORT - MID-VALLEY PIPELINE CO., CRUDE OIL TERMINAL FIRE, NEAR LIMA, OHIO, SANUARY 17, 1975

On January 17, 1975, a pipe ruptured at a crude oil terminal in Lima, Ohio. A motor-operated valve within the terminal was closed inadvertantly and pressure built up. When the pressure exceeded the psig working pressure rating of substandard flange, a crack developed. Crude oil was sprayed from the loge, a 14-inch long and burned; flames shot up over 100 feet high crack, atomized, ignited

Attempts to extinguish the fire and shut off input valves were hampered when overhead high-tension power lines burned, arched, and fell into the pipeline terminal yard. The fire destroyed the terminal building and killed the terminal deliveryman.

The NTSB determined that the probable cause of the accident was the inadvertant closing (either by malfunction or human error) of a 12-inch, motor-operated valve. The oil probably was ignited when a truck in the meter building was started. The pipe would not have ruptured if a properly sized pressure-relief valve had been installed
$R \& D$ CONSIDERATIONS
No R \& D requirement.

tin ifiplite mas llocion men

 standert flage in th low-rousgure moter acalfoll fyptumb

-xt -

 2 yo 1400 weso everpresmen.

Tivilis probably ma

通

x,
 Llosing ef velves to the cosinal, caused delay in Rlveficition.

- $-4=804$

 yon ifaltal.
 - Anchapiate prossure mellof probbly mould have bem dotectel an gerrocted hofors the secident.

monaris cana

The Mricional Trangpartation Safoty Bonrs dotornines that the probable cinco of tiv sceident mas the ingivertiont closing of a 12 -isch, noter-
 gresserie to mild mintil a sobstandard fiange in a low-pressure moter mifold ruptured. The oll probebly mes ignited ntron a truck in the meter ludilint mas started.

reanempitions

As a remit of ite imvestigation of the coclont, the safury Boai not thellemixy recemanitions.

On Hey 8, 1975, the 8afoty Board rucomanded that the office of biplin Sefot Gperations of the Depertant of Trwasportaelem:
 petic al cerndnal facilitios to leterdm thother conditions uigt, Sinilar to those at hine, wich could cause additionl neficines en divir system.
the the Mil-Malley Pipelise Company to utilise a cotal gytems tproach to plpal'ge sefety in the redesifn and recoastruction of the iestrey facility at hia 30 that single fallures froquant cobisetions of fallure do not mealite to laks or ower preapure. -

On December 1, 1974, a seven-man repair crew working on a leak on a 26-inch pipeline near Abilene, Texas, began excavating the pipe while it was pumping sour crude oil. They attempted to clamp the leak while the oil was spraying into the air. They were down in the trench, not using oxygen masks, gas vapor detection instruments, or ropes attached to their belts. All but one man, who ran to the truck to radio for help, were overcome by fumes and died

The NTSB determined that the probable cause of the accident was the attempted repair, in a manner which did not follow the company's written procedures, of a leak in a cracked fillet weld on a full-wrap repair sleeve. The fillet weld, made improperly during the repair of an earlier leak,
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement.

There wre at laat two ways in wich they could have repaired the ipaliae succeasiully. Pirat. they could have follow the compary's eafoty procedurea and conpleted the epecially fitted clanp. Carefuliy toae, the repair could hre been accomplished vithout facident, althong It would leter have to be cut out and replaced because chit wal to have lean on'y ecmporan repair. Second, the euperrisor could have ameden the len' and, because of its location, ordered the pipeline abat dow an frain an erdered the leaking section replaced. Fed thla been doen. the acy loes vould here been 1 or 2 daye of pupins.

conclusions

1. Diree moaths before the accident, ix full-urap sleeves were installad to repair a corroded, leaking, aection of pipelise. Mecallurgical teats showd that the repair eleeves contained subbtaodard fillet cells. The crack in the weld that falled propagated uatil leatuge cecurrel.
2. The repaired pipe was backilled at that time but it was not -iequacely supported from beneath. The pipe sertied in ic: chleh pinced the fillet veld in tension and propacated che initia crack chrough the pipe wall until it leaked again.
3. Thile the were repairite the lenk, the plpeliae was proping cour crade ofl; sour crode oll containe hydrogen sulfide, a Mifhy terde pes.
4. Decmee compary safety procedures vhich specifid the of angen brenthing equipmeat. vapor detection devices, and nafety ropes vere ignored, in er. died.

PROMALE CAUSE

The Eational Iramportation Safety Board deteradsea that the probeble emas of the accident va the atteapted repair, is a mamer which falled co follow the comany's uritten procedures, of a leak la a erached fillet well a full-zrap repait sleeve. The fillet wald, ende ipproperly Gering the repar of earlier lak, falled. The fallure allom toalc. ear ernek oll to epray and permate the leak eite.

neconimimations

The Eationel Tremportation Safety Loard subaltted the follarin precomenation to the Hest Texas Culf Mpe Lime Compary:

Instruet fes persomal in the eafety requirements containe In tive Operaticas and Malacmance Mapual and monitor mplognen' cort co eamare chat procedures are followed. (P-76-50) (Clese II. Priotity Pollourp)

[^6]

NTSB-PAR-76-5 PIPELINE ACCIDENT REPORT - DOW CHEMICAL U.S.A., NATURAL GAS LIQUIDS EXPLOSION AND FIRE, NEAR DEVERS, TEXAS, MAY 12, 1975

On May 12, 1975, an 8 -inch pipeline, which was shut down and closed in under pressure 4 days earlier, ruptured near Devers, Texas. Natural gas liquids at $1,425-p s i g$ pressure erupted from a fracture near the top of the pipe. The liquids vaporized, mixed with air, and formed a cloud which drifted over a highway. An automobile drove into the vapor cloud and ignited the vapors. The resulting explosion and fire killed all four persons in the automobile, melted telephone and power lines, warped railroad tracks, burned adjacent woodlands, and interrupted rail and highway traffic.

The NTSB determined that the probable cause of this accident was the rupturing of the 8 -inch pipe in a area of stress concentration caused by a gouge in the pipe. The pipe was gouged by a backhoe when valve assemblies were installed in the line. The failure was caused by a combination of reduction in wall thickness, residual bending and tensile stresses, and fatigue due to the cycle loading of the pipe.

R\& D CONSIDERATIONS
No R \& D requirement

Fxal vern Pan?

 lom stating of chis plpeline, Dort could is re recogelead ant the pipalise coull io ceraged urint uxcavationg of thout the lemege
 enrinise the comalite of ceatint to a kifh trese ivel, fecruaen

 remat fro cuerracion.

En tion aplied the total greten coscept to the proposed eypeen

In a peetal stuls. If the Safety loard recomeoded that the Amerten
 nol the Anericen Gee Anociation (MCA) ivvelop guidelives for the ne of the total syaten coceept, and recommond that the bepartment of frooeporta tion (bOT) encourage the ase of the cotal orstem concept by plpeline
 the Industry, and the Asis and the dericen Petroleun Institute are progreaplng in their response to the lafety loard recomeadation. BOT les also seted too ite recomendation.

concurians

2. The Pipe tea gongel thea the valve asomblies sare installed.
3. The Mire ruphirel veawe ur the pores, vilich ereated an area of atrese eomeentration.
4. The incermi grelic loaking, which wes experienced after centing. probly emand eracte to form in the arei of atrem comentration.
 formi a lev-lyias clow, and lrifted over Bifing 50 , viere it nes lodted by arcanile.
 It ull not lace that the pipaline vio gomed.
5. She tion ifopecthers mere not mare that the plpe at inptared hecape dey hed eo quipmet to tramedt preseare inta to then; ancefore, the pipllw vas not chet low promely.

y hesoni Iremportation Eafety Loard, Wpecial Btudy-a fystenatic

 fircoech te PLpllm safety, " R88-72-1. Con Inluater."

9. The groater hasani. fabermet in the traaportation of In repuise are stringeat afety coatrols thon to ocher petroleon proincte.
2. In exploymeat of efo total syitens concept coull have sutuced the libalibood of a lemaged pipe iarvivins insperica an cestim on
 af late to the Aspotetrice.
11. If etin rypture hat cccurral in eat of the nore eoneely propulated

moune caris

In Dachonal Trasportation lafety Soart leternions tint elve
 In area of strese conctatration cemen by a pougt in the plpe; the dpe gengel by backbo when valve assembies mere fostallu in in line. in fallure vas cuwed by a combintion of reduction in all thicknces, residalal bending and ceosile stresees, and fatiroe the
 is an acooblle vilich entered the vipor-rich nom.
neonnisumpos
 Tramportation Eafaty Doerd oubitted ine followid recomendation to On Cratel O.8.A. 8

Iniclate masaary equipmat chapes to provide data meceaseng Ler the safe operation of the Piplite eandromely to the drateh

 incruated aracies the pipalin loention, hale pipelime earacloms, Eaceriais treopported, mesarda mocontered, nd

 PATHFINDER HOTEL EXPLOSION AND FIRE, FREMONT, NEBRASKA, JANUARY 10,1976

On January 10, 1976, a gas leak was reported in the vacinity of the 6-story Pathfinder Hotel in Fremont, Nebraska. Several calls were made to the gas company, who responded but did not locate the leak. About $1 \frac{1}{2}$ hours after the first call and before the hotel could be evacuated, the hotel exploded and caught fire. Twenty people were killed, 29 were injured, and the hotel was destroyed. Three of the dead were gas company supervisory employees.

The gas had leaked from a 2-inch plastic pipe which had pulled out of its compression coupling and migrated into the hotel under frozen earth and a concrete road surface.

The NTSB determined that the probable cause of the accident was the 2-3/8 inch contraction (due to cold temperatures) of a 2 -inch polyethylene plastic main within a 4 -inch steel casing. The plastic pipe pulled out of the inadequately connected compression coupling. The plastic main was not anchored to the ends of the steel casing.

R \& D CONSIDERATIONS

1) Study the plastic-to-steel transition problem and take appropriate regulatory action.
2) Determine if there are locations or circumstances where standard compression couplings are unsafe.

TEGMICN BEPPRT DOCINEMTATIOM PAEF

Th. Rey Mords		TS.0istribution Statement	
Thermal contraction: polyethylene platic pipe: compression couplings; main insertiona; transition fitting: system design insdequacv; pullout; amergency plana.			
		This document is available to the public through the National Technical Information Service, Springfield Virginia 22151.	
(of thls report)	20.Securlity Classtication (of this page)	21.Mo. of Poges	22.price
inclassified		28	4.CC

PRICES SUBIET TO ORN'G:

CONCLUSIONS

1. During two winters, thermal contraction caused the 2 -inch polyethylene plastic main to contract $23 / 8$ inches on one end and $5 / 8$ inch on the other end.
2. The pipeline was not designed and installed so that the tife-in compression coupling would suatain the longitudinal pull or the chruat forces which were caused by the pipe's contraction within its 4 -inch steel casing.
3. The pipe had not been anchored to the caaing ends to prevent it from pulling out of the coupling.
4. The amooth steel suffener which was used in the end of the plastic pipe, underneath the comprestion nut of the coupling, was not made by the same manufacturer that made the coupling, and the sesulting combination produced a joint which was weaker than the plastic pipe that was being joined.
5. When the contracting pipe pulled out of the weaker compression coupling, leaking gas migrated into the hotel and was ignited by an unknown source.
6. The pipe was not installed in accordance with several important manufacturer's recommendations and the quality of workmanship at the tie-ins was marginal.
7. The gas company's emergency provisions were inadequate with regard to employee training, availability of emergency equipment, emergency communications, public education, and its liaison with
fire and police officials.
8. The apacing of distribution valves in the downtown area wes insufficient to shut off gas to the area quickly, and those valves which were present were not mapped to facilitate an emergency shutdowa.

PROBABLE CAUSE

The National Tranoportation Safety Board determines that the probable cause of the accident was the contraction, due to cold temperatures, of a 2 -inch polyethylene plastic main within a 4 -inch casing. The contraction of the plastic main caused the pipe to pull out of the inadequately connected compression coupling.

RECOMMENDATIONS

As a result of its investigation of this accident, the National Transportation Safety Board made the following recommendations.

On February 24, 1976, the Safety Board recommended that the Nebraska Natural Gas Company:
"Review its entire system to aee if pipe had pulled out of its coupling elsewhere and to rectify any potentially hazardous conditions found. (P-76-3) (Class I, Urgent Follownp)
"Conduct tests below the frost level during this review of the eystem to monitor all plastic pipe joints made with short compression couplings where pullout and resultant gae leaks could recur. (P-76-4) (Clase I, Urgent Follownp)"

In addition, the Safety Board has recommended that the Nebraske Natural Gae Company:
'L se manufacturer's proprietary transition fittings, inetalled in accordance with written procedures, or use pipe-to-casing anchors to limit contraction of plastic pipe, until a compresion coupling is verified by tests to be as atrong as the plastic pipe being joined. (P-76-49) (Class U, Priority Follownp)
"Develop written procectures and an inspection program to insure that all plastic pipe joints meet the design and installation provisions of 49 CFR 192(F), 'Joining of materials by means other than welding.' (P-76-49) (Class II, Priority Followup)
"Revise the company's written procedures to include the maximum length of plastic pipe to be used with compression couplinge, the number of foot-pounds of torque required for each size of compression coupling, a time interval during c.snatruction between retorquing of couplings, and the type of tiffener to be used with each brand of coupling. (P-76-50) (Class II, Priority Followup)
"Develop written procedures to handle gas leak emergencies and evacuation, and instruct operating and maintenance employees as to their roles in carrying out these procedures. (P-76-51) (Clase II, Priority Followup)
"Develop a procedure to shut down the system during emergencies. As part of this procedure, develop diatribution aystem maps showing valve locations, determine optimum apacing of highpressure valves in each of the NNG distribution syatems, and install additional valves, if necessary, to reduce the time required to hut down a section of main in an emergency. (P-76-52) (Class II, Priority Follownp)
"Develop a method of receiving emergncy telephone calls in order to assure immediate response to emergencies. The method should include logging of all emergency calls. (P-76-53) (Clase II, Priority Followup)
"Lmprove the customer education program and liadson between the gae company, the police, and the fire departments. Include in written procedures the methods for notifying police and fire departments of gas emergencies and the planned responses to them (P-76-54) (Clase II, Priority Followup)
"Equip emergency vehicles with combustible gas leak detectors, distribution maps, and other necessary work tools. (P-76-55) (Clase II. Priority Followup)"

The Safety Board has recommended that the Department of Transportation:
"Study the plastic-to-steel transition problem and take appropriate regulatory action to correct any unsafe practices. (P-76-43) (Class II, Priority Followup)
"Revise 49 CFR 192.281(e)(2), 'Mechanical Joints,' to require that atiffeners be designed to be compatible with compression couplings so that pipes cannot pull out of the couplinge. (P-76-44) (Class II, Priority Followup)
"Determine if there are locations or circumstances where standard compression couplings are unsafe, and amend 49 CFR 192 accordingly to prohibit their use for such applications. (P-76-45) (Clase II, Priority Followup)
"Analyze the methods which operators use to receive and respond to emergency calls and, based upon this analysis, amend 49 CFR 192. 'Operations,' to epecify minimum acceptable standards. (P-76-46) (Class II, Priority Followup)
"Amend 49 CFR 192, 'Operations,' to require that operators record the receipt of emergency calls, the response to the calls, and the time of each significant action taken by the operator. (P-76-47) (Class II, Priority Follomup)"

The Safety Board has recommended that the City of Fremont:

[^7]NTSB-PAR-76-7 PIPELINE ACCIDENT REPORT - SUN PIPE LINE CO., RUPTURE OF 8-INCH PIPELINE, ROMULUS, MICHIGAN, AUGUST 21, 1975

On August 21, 1975, an 8-inch refined product pipeline ruptured in Romulus, Michigan. Propane escaped from the rupture, sprayed into the air, vaporized, and then ignited. Flames 500 feet high engulfed the area. The fire burned nine persons, destroyed four homes and damaged three others, burned 12 vehicles and consumed 2,389 barrels of propane.

The NTSB determined that the probable cause of the accident was the propagation of surface cracks in a section of 8 -inch pipe, which had been dented and gouged previously. The cracks propagated when a valve which had been closed caused an abnormally high pressure to develop. Contributing to the accident was inadequate inspection during contruction of the pipeline.

R \& D CONSIDERATION

1) Study the use of lockout equipment which shuts down a pipeline system unless all valves are positioned properly and full clearance to operate has been obtained.

concursu.

 eferocrecte to evelop.
2. The lent an googe in the flpe ind bees undecectel ond mreported

3. A clowel valve a propene covare comed the presoure to tudi a
4. The Fipe rapterel the the exacios proparated to a extelcal ele

 tha resturtel a men mich mel that dom automelcally after the fallure.

Fonare cures

 cense ar bis sechlater the propagation of surface cracto in a rection

8.annemers

 Oneryt

 pertis eapcructiv fance to en quecting piplime. (r-x-s)

 bloctige. (NXSO) (Elime II. Priectis Pallan)

 price Fuccain Incileres

[^8]
NTSB-PAR-76-8 PIPELINE ACCIDENT REPORT- STANDARD OIL COMPANY OF CALIFORNIA, PIPELINE RUPTURE, LOS ANGELES, CALIFORNIA, JUNE 16, 1976

On June 16, 1976, an 8 -inch pipeline was struck and ruptured by a front end loader excavating near an intersection in Los Angeles, Cal. Gasoline under a initial pressure of $550-\mathrm{psig}, \mathrm{sprayed}$ from the rupture and drenched nearby buildings and objects. Ninety seconds later, the gasoline ignited, causing flames to engulf the area, killing 9 persons, injuring 14 others, and causing extensive property damage.

The NTSB determined that the probable cause of the accident was the rupture of the pipeline by excavation equipment, whose operator was unaware of the pipeline's precise depth and location. Neither the pipeline operator, the contractor, nor the California DOT knew Net the exact
location of the pipeline.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement

TECHMICAL REPORT DOCUMIMTATION PAGE

$\begin{aligned} & \text { T. Report wo. } \\ & \text { NTSB-PAR- }{ }^{26-8} \end{aligned}$	2.fove-nment Accession Mo.	3.hecipient's Catalog Mo.
7. Fitle end Subitise Pipelifle Acrident Report Standard Oll Cumpany of Callfornla, Pipeline Rupture, Los Angeles. Califiurnia, June 16, 19:6		5.Repurt Date Derember 9, 1976
		6. Performing Organization Code
7. Author (s)		8. Performing Organization aeport No.
9. Performing Organization Kane and Addiess Mational Iransportation Safety Board Bureau of Accident Investigation Heshington, D.C. 20594		$\begin{gathered} \text { To. Work Unit Mo. } \\ 1939 \end{gathered}$
		II.Contract or Grant No.
		13. Type of Report and Period Covered Pipeline Accident Report June 16, 1976
12.Sponsoring Agency Wame and Aodress MATIONAL TRANSPORTATION SAFETY BOARD Mashington, D. C. 20594		
		14.Sponsoring Agency Code
15. Supplementary Notes		
16.abstract At 10: 32 a.m., on Jure 16, 1976, an 8-1nch pipeline omed by the Standard 0il Company of California was atruck and ruptured by excavation equipment, wich was working on a road-widening project. Gasoline sprayed from the rupture and drenched Dearby buildings. Ninety seconds later, the gasoline ignited; the ensuing fire tilled 9 persons, injured 14 persons, and caused extensive property damage. The Mational Tranaportation Safety Board deteraines that the probable cause of the accident tias the ruptise of the plpeline by the excavation equipment, whose operator vas unauare of the pipeline's precise depth and location. Although the lise was known to exist, ite precise depth and location were not know by the pipeline operator, she construction contractor, the subcontractor, or the California Department of transportation.		
17.Key Mords Excavation denage; equipmen gasoline pipeline; cae-call project; rapid lgnition; ge runend post; evacuation of	rupturing pipelines; yaten; road-videning line spray; police esidents.	18.01s:ribution Statement Thie document is evailable to the publlc through the Mational Technical Inforention Service, Springfield, Vireinia 22151
Th. Securliy Classification (of this report) gaclassified	20.Security Classification (of this page) (NCLASSIFIED	21. Mo. of Pages 22

wise Pore 2765.2 (Rev. 9/74)

CONCLUSIONS

4. The B-iach, gaso:ife pipeline was hit and ruptured by the subcontractor's excavarion equipreit because the equipment operator, although aware of the pipeline's existence, believed it to be burled deeper.
5. SOCAL, wen it supplied CALTRAN ufth information about the location of its pipeline in the median of Venice boulevard. falled to provide the precise pipeline depth at the accident site and did not monitor t we construction activities continuously.
6. Wo atteapt vis ude to verify the pipeline depth at be accident site by the four parties, even though 700 feet of the pipeline sear the accident site had been previously lowered because of insufficient depth; the two testholes dug by SOCAi 628 feet apart were spaced 800 far for an accurate depth determination of the plpe at the point of rupture.
7. No "one-call" astea uas in effect in the area at the time of the accident.
8. High-pressure plpelines require more and closer monitoring in congested areas than in rural areas to guard against excavation
dange.

PROBABLE CALISE
The Rational Transpartation Safety Board determines that the probable cause of the accident was the rupture of the pipeline by the excavation equipment, whose operator was unaware of the pideline's precise dep:h and location. Although the line was knnwm to exist, its precise depth and lucation were not know by the pipeline operator, the construction con:ractor, the subcontractor, or the Califirnia Department of Transportation.

RECOMENDATIONS

As a result of its investigation of this accident, the National Trampartation Safery Board made the follouing recomendations: - to the Standard 011 Company of California:
"Sumat precise, accurate data concerning the depth and location of its pipelines for all future construceion project. (Class il. Priority Follown) ($\mathrm{P}-76-87$)
"Conduct inspections of operaiions along its pipelines to insure that construction does not risk the integrity of its pipelines. (Class II, Priority Followip) (P-70-88)
"Insure adequate commications witt contractors and other parties through writien, substantiated means during excavation work lacluding testhole verification for-the depth and location of its pipelines. (Class II. Prioritv Follomp) (P.76-89)
"Join any "one-sall" systems in areas where its pipelines operate and help to organize systems where the do not exist. (Class Il, Prioritv Fol: nup) ($(-76-91)^{\prime \prime}$

- Co the State of Callfornia Department of Transportation:

"Develop guidelines for preconstruction wetings, which should include methods of preventing damage to underground uillities to be encountered during the proposed construction work. Such preconstruction metings should be attended by all operators whose facilities are involved. (Class II. Priority Follarup) (P-76-91)" (The Safety buard made thas same recurmendatiun to the Aeerican Public Works Association on Februarv 2. 1973.)
 *"une-all" nutificition sitiem in suehern Calffornt. and wether aress ef the Siate where nine evisi, and work with suatuma alread:

 be in contact with the "nile-1 1ll" n-tilibition suster or the ir.dividua: facilities operators to determine thic preise depeh and lucation of anv undergruund ideilitian berore berinning the profor. (Class II, Priority Follomer) (P-7h-43)"
-- to the Arerican Petroleum Ins:itute, the Amorivan fias Assuriation, and the Interstate Aaturai Gas Ansoi ititio: id Aneri.a:

 theif facilities accuratell. iClas 11 . Pricirity rellmuri) (P-76-94)"

- to the Griffith Company dad C. \because. P..... In...
"Corperate and wordinate wi!' :lien . . .ip atiorp:iriz in entahlas.
 activiries. (Class Il. Prifeity Fill, euf) (P-it-aj."
By the :omtional traispmatation saieni b bar:

FRANCIS H. McADAY5, Memher, did nit partitipate in the adoption of
report. this report.

Decmber 9, 1976

NTSB-PAR-77-1 PIPELINE ACCIDENT REPORT - UNITED GAS PIPE LINE CO., 20-INCH PIPELINE RUPTURE AND FIRE, CARTWRIGHT, LOUISIANA, AUGUST 9, 1976

On August 9, 1976, a road grader ruptured a 20-inch gas transmission pipeline near Cartwright, La. Natural gas at 770-psig pressure escaped and ignited within seconds. The resulting flames engulfed the area, killing six persons, injuring one person, and causing extensive property damage. The operator of the road grader heard the gas escaping after he struck the pipeline. He jumped from the grader and ran from the site, leaving the grader out of gear, but with the engine still running.

The NTSB determined that the probable cause of the accident was the rupture of the pipeline by a road grader whose operator was unaware of the existence of the pipeline. Contributing to the accident was the previous construction of a rural road over the pipeline right-of-way which reduced the pipeline cover, and the failure of the construction agency to notify the pipeline operator of the road maintenance work over its right-of-way.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement

> 10. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1977

The following four pipeline accident reports were published during CY-1977. No pipeline safety studies were issued.

NTSB-PAR-77-1	Pipeline Accident Report - United Gas Pipe Line Co., 20-inch Pipeline Rupture and Fire, Cartwright, Louisiana, August 9, 1976
NTSB-PAR-77-2	Pipeline Accident Report - UGI Corp., Natural Gas Explosion and Fire, Allentown, Pennsylvania, August 8, 1976
NTSB-PAR-77-3	Pipeline Accident Report - Exxon Gas System, Inc., Natural Gas Explosion and Fire, Robstown, Texas, December 7, 1976
NTSB-PAR-77-4	Pipeline Accident Report - Pennsylvania Gas and Water Co., Natural Gas Explosion, Williamsport, Pennsylvania, January 25, 1977

NTSB-PAR-77-1 PIPELINE ACCIDENT REPORT - UNITED GAS PIPE LINE CO.,

 20-INCH PIPELINE RUPTURE AND FIRE, CARTWRIGHT, LOUISIANA, AUGUST 9,1976On August 9, 1976, a road grader ruptured a 20 -inch gas transmission pipeline near Cartwright,La. Natural gas at $770-\mathrm{psig}$ pressure escaped and ignited within seconds. The resulting flames engulfed the area, killing six persons, injuring one person, and causing extensive property damage. The operator of the road grader heard the gas escaping after he struck the pipeline. He fumped from the grader and ran from the site, leaving the grader out of gear, but with the engine still running.

The NTSB determined that the probable cause of the accident was the rupture of the pipeline by a road grader whose operator was unaware of the existence of the pipeline. Contributing to the accident was the previous construction of a rural road over the pipeline right-of-way which reduced the pipeline cover, and the failure of the construction agency to notify the pipeline operator of the road maintenance work over its right-of-way.

R \& D CONSIDERATIONS
No $R \& D$ requirement

conclusions

Plain: .

2. Im 20-inch metural gas pipeline was goosed and pactured by a road grader durina road minteamen vort.
3. Operator Ho. 2 mas not ovare of the existence of the plpeline secuse operator to. 1, who ras mare of the pirelime, failed to trform him.
4. Enited ifl mot lover or encase tte pipelimes after the rowd lad leen constructed crea though the cover over the pipelimet bed been docreased by 18 incles.
5. Dalica's efforts to infor the Jury about the hatarle of corking mar pipelines did not lecter the Jury roel grader from striking the plpeline.
6. The bury dil not motify Dalted ae ropoested before che Jury laga greding in the viefalty of the pipaline.
7. At che cime of the eccident so "cop-call" syister un in effect to assist excavatore is motifyine pipelise operatort of the tin and location of propored excrations.

Probala Comen

The Datioanl Tramportatioa Safety Boerd deternisee that the problble came of the accilent man the ignition of matural gas that mas cempin fre a plpellm which had been ruptured by a rad grader wome aperater memare of the pipelise's existeace. Contributing to the cecidnat me the proviowe cuatruction of a rad over the plpeline risht-af-ang andel reduced the plpelime's cover, and the fallere of the Jackeca Ferind Follea Juy to motify the pipelime's operator of the roed nalatenmes netb.

BCOMETMTIC:

O- Trent of chie cocldeat, the Iationel framportatlon safoty

Trge tindr mober compale to participate in er cotalich cmaze prevencion prigrem. laclulive the "an-eall" notification syote. (clase I. Freat folloma) ($-7(-75)^{\circ}$

- to the Sachoon Farkat Pollee Jurys

Conec grelins operatlons on bur roode util a pla is ievelopel and implemated to notify ewarators of horiad faclilicles at loant 2 vortan
 this roull allo cime for inatifiention of the Eacilitios' locetion an inpth. (Clam I. Uromet Po11anap) ($-x-76$)

Tratruct queratore of exemvilion oquipmat in eafty precention that chould te trkea nom erting matr lerich facilities. an prowio them armerters sith information on hem tive lecetion and probable upth of cham

Trutact die 20-inel an 24-1neh pipelinen

 uervetion an ten trementy cetion to prumen

> copplece promptis uvelopment of an amentional protren for emenvators and lastitute a proyra to afriet creavators how to recogale pipalim rishte-of-ray, provide seneral informition bout preceutions then axcavating mar pipelines, and encourase notification hefore excevatlag. (Clas i. Ergeat Pollonap) ($\mathrm{P}-76-0)^{\prime \prime}$
> - to che Covernor of the seate of loulolme:
> Oncourage the inplementation of the propoed Lonisima "oon-cal1" motification oysten to provide scatewide coverage. (Clase I, Urgent Follonap) $(1-7(-81)$
> MAvime all scace an parim agencles about the efremstances of this accident ond urge that ther sotify operators of pipelion and ocher undergrowad facilitile before amenvetios mat these fecilities. (Clase I . Vrgent Pollowe) $(1-7-2)^{\circ}$

NTSB-PAR-77-2 PIPELINE ACCIDENT REPORT - UGI CORP., NATURAL GAS EXPLOSION AND FIRES, ALLENTOWN, PENNSYLVANIA. AUGUST 8, 1976

On August 8, 1976, a gas explosion destroyed a house in Allentown, Penn. The gas migrated from a break in a 4 -inch cast-iron main into the building. The exterior walls were blown out and the rafters fell in, trapping a man. Firemen arrived and rescued the man and also began to fight small fires erupting from debris left by the explosion. Police and firemen'began to evacuate the residents of the block.

Shortly thereafter, a house across the street from the first house exploded. The front brick wall collapsed into the street and trapped two firemen. The street then caved in directly in front of the trapped firemen. The firemen were killed, 14 persons were injured, four buildings were destroyed, and several buildings were damaged.

The NTSB determined that the probable cause of the break in the main was structural weakening by localized graphitization and was also undermined by a sink hole which was enlarged during heavy rainfall. The failure to check the second house for an explosive atmosphere and to shut off its gas supply, resulted in two fatalities and numerous injuries.
$R \& D$ CONSIDERATIONS

1) Encourage, coordinate, and monitor development of equipment which could be used to detect the location of sinkholes in the area of underground
utility lines.

CONCLUSIONS

Plodinge

1. An unusually heary rainfall of 3 inches in 2 daya caused a sinkhole under the gas mic to ealarge.
2. The first break in the gas main occurred more than 45 mimites before che other four breaks, but all were caused by settleant of the ses main over the ainkhole.
3. The main firat broke where it had been veakened by graphitication where a 3/4-inch, copper vater service line to 1127 Oak Street concacted the min. The graphitization resulted from a galvanic ection between the two dissiallar metals.
4. Ireake in the sever and water lines vere caused by the aiakhole.
5. Contiound gas supplies to 1128 and 1130 Oak Screete laft possible sources of igaition for the second explosion.
6. Weither the ges company personnel nor firemen used combustible ges Indicators at the eccident aite and the atmosphere in the second house that exploded had not been checked for a possible explosive aixture. Specific training in and conscientious use of combustible ess indicators alght have prevented the eecond explosion.
7. The trapped firemen and rescue personnel aight have been injured leas if the gas fire in the atreet had been extingulshed uith dry
chenicals.

Probable Cause

The Mational Transportation Safety Board determines that the probable cause of the accident vas the ignition, by unknown sourcea, of natural gas which had leaked from a broken cast-iron gas main under the atreet in front of the houses. The gas main had been weakened structurally by localized graphitization and was undermined by a sinkhole. The failure to check the second house for an explosive atmosphere and to shut off its cas aupply realted in two fatalities and numerous injuries.

RECOMTRNATIONS

As a result of its investigetion of this accident, the National Tramportation Safety Board made the follouing recommendations: - to the UGI Corporation:
"Revise its 1968 Guide for Fire Fighters and training program by incorporating instructions on how to deal with events sinilar to this accident vith particular ephasis on the proper use of combustible gas indicators. (Class III, Longer Terw Folloup)
$(P-77-1)$
"Revise its emergency plans to incorporate the revisions that becane effective October 1, 1976, to 49 Code of Federal Regulationa 192.615, and to insure emergency response coordination with firt and other public officials. Particular emphasis thould be placed on the availability and the proper use of combutible gas indicators. (Clase III, Longer Term Polloup) (p-77-2)
"Lupedite, in conjunction with equipsent manufacturers, the developmeat of survey unit that could be used to detect the localion of sinkholes in the vicinity of cast-iron gas mains. "Downard-looking" rader equipment should be investigated as one possible means of curveying for sinkholes. (Clas III, Longer Ter Folloup) (P-77-3)"

- to the Office of Pipeline Safety Operations of the Materiale Transportation burcau of the U.S. Department of Transportation:
「Encourage, ccordinate, and monitor development of equipaent which could be uned to detect the location of ainkholes in the vicinity of underground utilities. (Class III, Longer Tern Folloup)
Wechaical the thenting Standarde Comittee of the American society of
Covelop suidelines to assist operatore during emergencies to promply isolate leaking segments of pipe in a low-pressure system. (Class III, Longer Tern Followup) (P-77-5)"
IT TEE MATIOML TRANSPORTATION SAFETY DOARD

/s/ $\frac{\text { ChBSTER B. TODD, JR. }}{\text { Chairma }}$	
/e/ KAY BaILEY	
	Vice Chainman
/s/ FRaNCIS H. MCADAMS	
/a/ PHILIP A. ROGUE	
Member	
/E/ MILLLAM R. BALEY	
	Member

May 18, 1977

NTSB-PAR-77-3 PIPELINE ACCIDENT
EXPLOSION AND FIRE, ROBSTOWN, TEXAS, DECEMBER 7,1976

On December 7, 1976, a natural gas compressor operating at 1000-psig pressure falled and then exploded and burned during a routine maintenance Inspection at an Exxon Gas Systems compressor station near Robstown, Texas. An emergency shutdown system was activated, but the four automatic fire gate valves on the pipelines that supplied the station did not close. Another emergency control system also failed to automatically close the shutoff valves another explosion the five compressors in the station. Thirty minutes later, downstream of the occurred in the station. Pipeline valves upstream and until the pipeline pressure approached and closed manually. The to $250-\mathrm{psig}$ and the fire gate could be caused property damage and gas loss are killed one person, injured two, and caused property damage and gas loss amounting to $\$ 5$ miliion.

The NTSB determined that the probable cause of the accident was the fallure of the studs securing the 10 -inch valve cover. The studs failed from stress fatigue and tension because they were overtightened. Contributing high internal gas was the fallure of a compressor due to overheating and a shutdown valves to close.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement

4. Title and Subitile pipeline Accident Report - Exxon Gas 8yetem, Inc.. Matural Gas Explosion and Mir Robstom, Texes, Deceaber 7. 2976 7. Wuthor(s)		5.Report b5. Oatober 13.1977 b.partorming digenleation Code	
		T.Performing orgmizatlon ateort Mo.	
3. Werforaing organization hame and dcdress Rational Iransportation Safety Board Bureau of Aecident Investigation Uahineton, D.C. 20594		$\begin{gathered} \text { T6 Work Uniz fio. } \\ 2198 \end{gathered}$	
		T.E.niract or Grane mo.	
		13. Type of heport and Period Covered Pipeline Accident Repors December 7. 1976	
12. Sponsorling Agency Mame and Address mationll transportation safety coard Mashington. D. C. 20594		14. Sponsoring Agency Code	
15. Supplementary Motes			
16.abstract at 11 a.m., c.s.t., on December 7, 1976, a natural gan compreasor operatiag at 1,000 pais pressure falled and then exploded and burned at an Exxon Gas Syates, Inc., etation near Robstom, Texas. An emergency shutdown aystea vas activated by a worker at the station, but the four automated fire gate valves on the two pipelines that supplied the station did not close. Another emergency coatrol syster also falled to autometically close the shutof f valves leading to two of the five compressora in the station. At $11: 30 \mathrm{a} . \mathrm{m}$. , a second explosion occurred within the buraing building in ose of the compressors that had not shut don autonatically. Pipeline valves upatresa and donatrean of the station had to be clomed manually. Ges burped for 3 hours until the pipeline pressure decreased to 250 psig and the fire gate valven could be approached and closed manually. The fire killed one person, injured two persons, and deatroyed three engine-driven compressors and the compressor Muilding. Property dange and gas loss vas estianted to be $\$ 5$ allifon. The Mational Tranaportation Safety Board deteraines that the probable rause of the accident vas the fallure of the studs securing the 10 -inch valve rove:; the studs falled fram streas fatigue and tension because they were overtightened. The antural gas that was released ignited, posaibly by an electrical apark from a compressor engine. Contributing to the large losses vas the fallure of a cast-iron compreasor cylinder due co overheating and a high internal gas pressure, and the fallure of efveral autoentic gergency hutedom velver co close			
Matural ges explosion; stre -tuds; cast-iron fractures energency unit shutdown; fl torquing of atude; instrue valves; syelem nefecy; comp	fatigue fractures of compreseor cylinders: gate valves; overair; solenoid valves: eseor station design.	Th.Distribution statement This dorment is avallable to the public through the National Technical luforeaclon Service, Spriagfield. Virginia 22lsi	
15. Securliy Classification (of ehis report) UNCLASSIFIED	20. Securley Classification (of this page) UNCLASSIFIED	21.Mo. of Pages ${ }_{\text {21 }}$ 22.Price	
W5SE Form 1765.2 (Rev. 9/74			

Fire Protection Systen

Adequate fire protection equipment is required by 49 CFR 192.171 for all compressor tations. Some of the other Eroon compreseor atati have chenical fire extinguiaher syatens, but only mall hand-beld fire oxtingaiabers vere available at station Mo. 1. These would not be effective agalnst such a large gas fire. The vater and chemical spriys brought in by tank were not used by the firemen because the fire at that time vas too lateace to be approached even with the use of asbeston firesulte. It is also doubtful if the vater and chemical sprays could lave pot out wich a large fire. The termination of the sas mupply vas the coly effective way to extinguish euch a large cas-fed fire.

conclusions

Findine

1. Five of the eisht studa that held a 10 -inch cap on vuction valve Mo. 3 of cylioder Mo. 2 of compressor unit Mo. 1 failed becance of metal fatigue caused by excessive stresses from overtorquing. The other three studs falled in tension at mear madine allowable operating pressure.
2. The source of ipnition of the gas vas probably fros the electrical aysten of the gas engine inside of the building.
3. One, and possibly two, of the men that had been working in compressor building Mo. 1 pushed an ewergency shutdom (ESD) weton, bat ebe station did not ohut dow at deasmed.
4. The operationsl and mergency shutdona syetea for each compressor oft did sot function in units Mo. 1 and Mo. 2 for a combination of rescoses:
(a) The t-isch cyilader operators on the 10 -inch bypass and 26-inch suction and discharge valves were too worn
(b) the vives vere sequential, and it is posalble that the electrical circuitry vas destroyed by fire before all valves could complete the sequence of operation to
(c) one of the air lines in compressor buildins Mo. 1 vas destrojed by fire, and the inatrument alr apply to operate the controllers of the auction and diecharge valves at this building vas lost.
5. A $1 / 8$-inch vent on a 3-way colenoid valve vas clogged and prevented the cloning of the two fire gate valves on the 30-inch-diameter pipeline.
6. The linkage in a 4 -ray control valve becane atuck and prevented power-loading gas from closing the two fire valves on the 36 -inch-diameter pipeline because fire sate had not been operated for more than 6 monthe the valve
7. A second explosion occurred one-half hour after the first failed the cast-iron, \%o. 1 cylinder of compressor unit No. 2
8. The radiat
reacue or firefighting the $1,00 \mathrm{C}$ "oot-long flames made any for more than 3 hours motempts posible. The fire burned and dowstrem from the atation
ere closed.
ralve vas deleyed distant compressor over 1 hour because the workerew from a of a pouer gas valve that has uafailliar with the operation had to close the valve manally.
9. The 1-year period between the inspection and the operation of the remoty and autometically controlled compressor station valves is too long to ingure their dependable operation; in operated station control eystems for eight autonatic powerin about $\$ 5$ aillion in property dange and paperly resulting
a manully operated control to remotely operate emergency
heve been installed to blow docation within the atation should
seckent of the varlou ceergency vhut aot eade bofore thia amerency shutdow control byetime.

Probsble Cauge

The Mational Iransportation Safety Board deternines that the probable cause of the accident vas the failure of the studs securing the 10 -lach valve cover; the atude falled from strese fatigue and cension because they were overtishtened. The antural ges that was released ignited, poasibly h) alectrical spark from a compressor engine. Contributing to the lare losses vas the fallure of a cast-iron compressor cylinder due to overheating and a high internal gas presure, and the failure of several cotonatic emargency shutdown valvee to close.

DECOMRIDATIONS

As a result of its investigation of this aceident, the Mationed Traseportation Safety Board made the folloring recomendetions:

- to kron Gat Syatem, Inc.:
"Take necessary steps to insure that studs on compressors and ensine components are tightened to the nuber of foot-pounds of torque recomended by the equipment manufacturer. (Class II, Priority Follawp) (P -77-27)
"Inspect enersency shutdow valves and their components at compreasor stations at more frequeat intervale then 1 jear (boathly or quarteriy) entil equipeat of proven reliability has been installed, teated, and shown to be responaive for loager periods of inactivity. (Class II, Priority Polloup) (p-77-28)

Thke a cotal aysten reviev of electric, alr, and gas-operated arerency equipeent, uith particular mphanis on intercomected air syates and backup or duel-feed air systen in compressor ctatioas. (Clas II, Priority Follounp) (P-77-29)
maclude, in mergency shutdorn systems, a separate control to remotely operate valves that can independeatly blow dow the tation piping. (Cless II, Priority Follourp) (P-77-30)

Investigate more dependable items of control equipment and replace aristiag colenoid and 4-way valves at fire cate valves with this equipment. (Class II, Priority Follorup) (p-77-31)

Mpesignete eritical valves on control lines (gas, air, and mydraulic) as to whether they should be nomally open or closed, and plece signs oa chese valves chenever the lines are shut dow for mantenance or when the valves are not in their nornal poaitions. Such cheages should be authorised, lopsed, and reported to all percomel responsible for the operation of the ayaten. (Ciase II, Priority Folloup) (P-77-32)

[^9]NTSB-PAR-77-4 PIPELINE ACCIDENT REPORT - PENNSYLVANIA GAS AND WATER CO., NATURAL GAS EXPLOSION, WILLIAMSPORT, PENNSYIVANIA, JANUARY 25, 1977

On January 25, 1977, a low-order explosion and fire destroyed a house in a residential area near Williamsport, Penn. Volunteer firemen: were extinguishing the flames, and gas company employees were trying to locate a natural gas leak, when a second explosion demolished a house 70 feet away. A resident of this house and a bystander were killed by the explosion and 23 persons were injured. Neither of the houses were served by gas.

The NTSB determined that the probable cause of the accident was the failure, due to thermal contraction (caused by the cold temperatures), of a substandard weld on a 4 -inch high pressure gas main, which had been lowered and stressed by sewer construction. Contributing to the fatalities and the large number of injuries to firemen was the gas company's failure to detect the gas accumulation in the second house, to evacuate its occupants, and to warn the volunteer firemen of the dangers when a high pressure gas main is leaking and is capped by frozen earth.
$R \& D$ CONSIDERATIONS
No R\&D requirement.

comelosions

Pladin:

2. Weenee of the cold temperaturee at the cine of the secidnat, che b-ioch gas min val coperiencing extrome thermel coatraction
3. Evere stresses vera created ou the gea mala whes its grado man lomered by $11 / 2$ feat during the 1972 sever coastructic.
4. Inconpacted beckilli placed over and under the gas nain, and large cobblestones placed on the gas mind during eever conetruction aleo created otresses because of subsequent settle-
5. The subetandard veld which falled rould aot have pasced melding codes in affect at the time it res eade because of a lick of penetration into the walle of the pipe by the stringer bead. The second veld pase was also very porous and of poor quallity.
6. The gat company did not heve an adequate inopection progran to letect and correct the faulty veld when the ges main mas conetructed.
7. The gas compary eargency plans had not been updeted to include the mer requiresent for liaison with fire departments contained In 49 Ch 192.615, which becase affective on October 1. 1976. The gas conpuny had not informed the firemen concerning their reaponer to this type of gis asergency.
8. The gas company training progrea on its currant cmergency procedures van insdequate. The gas compray dispatcher and carvicean did not follou the urittea compeny procedures.
9. The gas enfa chown a shutoff valve vhich did not exist vithin block of the sas latk. This caued a loos delay in shutting

Probeble cane

The Eational Iranoportation Safety Loard deternineo that the probable ense of the cecident was the fallure due to thernal contraction of a lowered and suhemur mish-prasure cas min, which had been
 laled by forma sources.

The fat compeny did mot detect the oubstandard veld then it mas nat mor ild they stipulate that the oubsequant sever construction ajaceat to their gat min mot impone additional atreas oa the min.

Contribating to the facalitiea and the large auber of injuries to In the man the sas compary's fallure to detect the accumblation of gae explonion, cod to that exploded, to evacuate its occupanta before the eondicions that ean be created atear fircen of the poteatially hazardous ad io capped is frosen earth.

Beconter irgome

4 a remit of its imeatigation of this accident, the Dationi Iremportation safety Board made the folloulng recomendatione:

- te Pameyivania Ga anl Heter Compasy on Juae 6, 1977:

Mresvate, on a rando semple besis acceptable to the Pameyivanl Tublle Sarvice Comiasion, the velde in the failed b-inch gne mis Ind nondestructively teat them according to the Aserican Potroleun velds on the pipelding Code to detenine if there are more faulty pass ruinspection. (1 -77-6)
Inetruet ite personnel in mphasite the poteatial ta lapoction techniques and procedures and construction deane to operatio of undetected faulty melde and plpelinea. (P-77-7)

Reenphasize and instruct gas operations personnel on the inportence of liaiso with the fire departeat and eatablioh oith all fire departmente, including voluateer ilire departmenta, whet the proper resposse ehould be to every type of gas cergency. ($1-77-8$)"

Oa Lecember 1977, the National Irensportation Safety Loard
issued these addicional recomendationa:

- co Pemorylvania cas and Mater Compay:
"Initiate an effective geaeral public and gas cuntomer informetion progra about the mature, characteriselca, and havards of antural gas and what to do when it is acoumtered. (Clase II, Priority Action) ($\mathrm{P}-77-38$)

Test the effectiveneas of the energency procedure training of all operatias persomel. If the training is found to be ineffective for ay group of aployees, provide additional inatruction. (Clase II, PTiority Act100) (-77-39)

Terlfy the location of all hich-preseure shutoff valves showe oo par mion atlased and change maps where mesescary. (Class II.

- co the Matarials framportation Bureau of the V.8. Department of Iramortaclem:

Mreand les Pergency Services Iraining Couree contract to Include - cection on the herardous naterlals aspect of flamble pipeliwe catertals swoh as metural gas and liquid hydrocarbon. Coorlime 이 cooperate ifth the American Gen Assoclation, the Americen Petrole Inatitute, an the Iaterstate Matural Gas Absociation of farter to abe thalr expertice in this aras. (Clase III, Lomer matrmet all offlee of Plpelloe safety Operations regional compliance efficea and atate ageate to loppect gas companies under their jurisdictica for eaplinace to the amoded 49 CFR 192.615 (mergency plans) effective October 1. 1976. Particular atteation ehould be givea to the provision that requiree that the gas compan train ite appropriate ampreacy proconel to asoure that they are koowledseable of the जrify that the training in the company tests its aployces in $(-77-42)^{\prime \prime}$

Et in mitoul mustocation sarits mond
11. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1978

The following are the six pipeline accident reports and special studies published during CY-1978.
-PSS-78-1 Special Study - Safe Service Life for Liquid Petroleum Pipeline
-PAR-78-1 Pipeline Accident Report - Consolidated Gas Supply Corp., Propane Pipeline Rupture and Fire, Ruff Creek, PA, July 20, 1977

1-PAR-78-2

3-PAR-78-3

B-PAR-78-4

B-PAR-78-5

Pipeline Accident Report - Alyeska Pipeline Service Co., Explosion and Fire, Pump Station 8, Near Fairbanks, Alaska, July 8, 1977

Pipeline Accident Report - Atlanta Gas Light Co., HighPressure Gas Main Rupture, Atlanta, Georgia, December 1, 1977

Pipeline Accident Report - Kansas Public Service Co., Inc., Explosion and Fire, Lawrence, Kansas, December 15, 1977

Pipeline Accident Report - The Gas Service Company Natural Gas Pipeline, Rupture and Fire, Kansas City, Missouri, June 12, 1978

The NTSB made a study of liquid petroleum pipeline accident data gathered from 1968-1976 by the Office of Pipeline Safety Operations (OPSO) the pipeline safety regulatory office within the Materials Transportation Bureau.

The study originally was to develop a means of measuring safe service lives for liquid petroleum pipeline. However, the NTSB found that the existing OPSO data collection system was initiated in 1968 with no plan for its use in writing safety regulations or in providing its own analysis of the data.

NTSB's study of the data collected revealed that corrosion and pipeline ruptures by construction equipment caused over twice as many accidents as all other causes. Corrosion accidents declined steadily through the study period due to "continuing improvements in pipeline materials, technology and preventive maintenance programs." Construction damage accidents have remained relatively constant since 1970. Michigan's statewide "one-call" system was cited as an effective method of reducing such accidents and is recommended by the NTSB for other states with high accident rates. Under a one-call system, an excavator is able to report his proposed project to operators of all underground facilities in the excavation area with only one phone call.

The NTSB also made recomendations to seek improvement in the OPSO data collection system, including: computerization of liquid pipeline accident data to permit calculation of leak rates per mile and rates based on such factors as pipeline age, strength, depth, product carried, etc.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement.

CONCLUSIONS

1. Corrosion was the leading cause of liquid pipeline accidents from 1968 through 1973. Continuing improvements in pipeline materials, technology, and preventive maintenance programs have greatly reduced the frequency of these accidents.
2. Equipment-caused pipeline ruptures were the second leading cause of accidents from 1968 through 1973. Because the number of these accidents remained relatively constant after 1970, equipment-caused pipeline rupture acciderts exceeded the number of corrosion accidents during the years 1974 anid 1976. This accident cause also was the leader in losses of trarssported pipeline products as well as total casualties from 1968 through 1976.
3. The damage nrevelition program in Michigan appears to have been effective in reducing the flequency of equipment-caused pipeline ruptures. The Staie's "one-call" system is a major factor in the reductint.
4. "One-call" systems in Oklahoma and Texas would reduce the number of equipment-caused ruptures.
5. Although LPG is involved in only 10 percent of the reported accidents leaks, it caused 62 percent of the fatalities, 51 percent of the injuries, and $2 /$ percent of the proparty damage.
6. Instzustions for filling out the Fonn 7000-1 are not adequate to insure cornistency and thuroughress. Because the persons completing the forms tave not interpreted the instructions in the same way, a variety of responses to similar accident leak situations have resulted. The OPSO also has not audited Form 7000-1 responses sufficiently to insure the completeness and accuracy of each report.
7. There is no way to predict safe service life of a liquid pipeline using the currently available data.

RECOMMENDATIONS

As a result of this study, the National Transportation Safety Board recommended that:
...the Office of Pipeline Safety Operations of the Materials Transpertation Bureau of the U.S. Department of Transportation:
"fublish a plan that describes how the OPSO will use accident rep ort data to formulate safety regulations and to develop a safe service life model for pipalines. (Class II, Priority Action)

[^10]"Computerize the redesigned Liquid Pipeline Accident Report System. Include the capability to:
a. compute the historical accident/leak rate-per-mile of pipe for each carrier as well as the nationwide rate;
b. make periodic comparisons of each carrier's accident/leak rate against the nationwide accident/leai rate;
c. compute and plot selective accident/leak rates based on pipeline parameters such as age, specified yield strength, depth of cover, product transported, etc;
d. selectively retrieve and sumarize accident/leak data pertaining to amy given accident or classification of accidents;
e. produce summarized reports reflecting the above-listed information. (Class III, Longer Term Action) ($\mathrm{P}-78-61$)
"Conduct audits of the completed liquid pipeline accident reports to insure that mandatory data is provided. (Class III, Longer Term
"Expedite completion of thr: rciemaring to strougthen the Federal regulations concerning LPG pipelines. ((lass TI, Priority Action) (P-78-63)"
...the American Petroleum Institute:
"Urge its member companies to participate in and encourage improvement in any 'one-call' system in areas where their pipelines operate, and help organize systems where they do not exist. (Class II, Priority Action) (P-78-64)"
...the Govemors of the States of Texas and Oklahoma:
"Take action to sevelop and implement statewide 'one call' excavation notifiaation systems. (Class II, Priority Action) (P-78-65)"

BY THE NATIONAL TRANSFORTATION SAFETY BOARD

> /s/ JAMES B. RING
/s/ ELWOOD T. DRIVER
Fice Chairman
/s/ FRancis h. Mcadams
Member
/s/ PHILIP A. HOGUE
Member
October 12, 1978

Creek, Pa. The liquid under 450 l-inch propane pipeline ruptured near Ruff fumes settled line efog over the bot pressure, vaporized and propane gas later, two men in a pickup truck. entered of a valley. One and one-half hours propane gas ignited when they tried to the area, the truck stalled, and the followed killed the two men and caused rest the truck. The flash fire that long. and 100 yards wide. and caused property damage in an area 1 mile

The NTSB determined
stress-corrosion cracking of a 12 the "probable cause of the accident was the to earth subsidence caused by previous propane pipeline which had been subjected pipeline. Contributing to the amnunt of coal mining operations beneath the isolate the failed pipelinc: sention was propane burned and the time taken to to quickly detect and isolaic the failure.
$R \& D$ CONSIDERATIONS

1) Conduct research jintc stress-corrosion cracking, particularly on older steel gas pipelines that have been converted to liquid service.
2) Conduct field tests, using acoustic emission testing techniques developed by the gas industry, to determine if highly stressed portions of liquid this mearis before fallure.

conclosions

Pladine

1. In Iaking propane meat undetected for $11 / 2$ toure after the fallure beceuce mo leak detoction equipment had bon factalled and becsuse the pupp thation personnel at liacting thougint they vere heving puip vapor lock problems.
2. Secause chere val no meter at the orisinatime pup station on this propane pipelime, there was no vay to detect a loak by comperint the propase volume eaterias the pipelise ofth the volume lavine the pipelime.
3. Consolidated ild sot have written procedures for che enfe eperation of the pipaline under monal operation or furine eargency opertalloan as required by 49 CR 195.402.
 Chervfore maforcmble. toment, Comsolilated's eommalcation to sefely eperace this propan pipallme bas net cinwete.
S. In inidns propeos veporised ond alsratel dowatrens throngh - ralley for 1 mil bofore it ma ionited by a electrical
 leas tha 10 percent of all reporte liquid petroleu pipelina ecellente. bit it camed 65 percmat of all the fatalitios, to parcmit of all the induries, and 31 perceat of all the property
4. Ine thptrice in the 12-1sch propane plpelise man camed in the propmatio of atrea-corroito crache to the point of failure.
B. Streso-corroaion cracking ia affected by time al the crack
 a perlod of yeare.
 tive pipalle in 1974, at the rumal of coal pillare in the Ane ifrectis marneath the plpeline in 1976 ad 1975 prok-bly craced allictonal etraseas an the plpelime that obetted the struse-corrusion eractios.
5. Athough loemented for notural gen pipelines. this falluce mes powibly the first raported case, verifiad bi luboratory anlysie. a strese-corroalon erscifise a liquid pipelime.

Propesle Come

Ine Eational Iramportation Safety Soand detenfiea chat the probible come of the ceellant whe the fallure by atrma-corronion cracking of a 12-inel propme pipalime vilch had low objected to earth ubsidence

The Catalitios an property lanas reanital from the eacoping linuld
 - elwetrieal gatit fru a truck.
 to foolute the fallad pipeling vetion wa the obernce of proviricen to fotect che falluie is a timely mamer on to leolate tive felled

A. a result of ite lovestication of this accident, the Hational rransportation Bifery Board made the following recomendationa:

- to Consolldated Ges 8upply Corporatica:

-Inspect the field sagbend uodar the strea and adjacent to the overbend that fasled and at am ocher frovn locntions where the pipelise han undergone settlement of this type uith the marnetlc-particle-inspection or other cuitable technique, for signs of etress-corrosion erceling. teplace the eagbend or other pipe if incipient crackiot is present. (Clase II, Priority Action)(p-78-1)
"Test pipe for strese-corrosion cracking wing a mondestructive testing method such as the magnetic-particle-iaspection method or other suitable technique every time the pipelise is exposed for mintemece purposes. (Clase II, Iriority Action) (P-78-2)
"tatabish writteo procedurea to insure tie afe operstion and mintenance of this pipeline syatem caber mormel and energency cooditions as requifed by Federal regulations. (Claes II. Friority Action) ($-78-3$)

Tratall a eeter at the Rastings Extraction Piant on the falet to the propme pipelise to deternise hor meh liquid is matering the pipelim. (Clam II. Priortty action) ($\mathrm{P}-78-4$)

Mrveaticate the feasiblilty of detection pipeline lake by the uee of electroaic In/Out flow moaltore or other leak detection devices, and fastall are capable of detcecting both anall and large leale. (Clase III, Longer Ferm iction) ($2-7,-5$)

Cratablish a control ceater for the liquid propeen plpeliae and celmeter all preasure, flom, and ocher pertiment late mecasary for the afe operatico of tids pipeline to this ceatral location. (Clnes III. Lomet Itrm detion) (n-70-6)
Iaspect an a raodo etmile bais the segment of pipeline 10 nilles dovatreen of the former Freston compressor on and 79 includint the ares between Interstate Mlyhury. of streas-cormen alnes are prevalat, for other coldeace corrosion pittins. cracking or increased-depth, Remeral consider line replacencrease cathodic protection or corrasios or .eplacenot in areas where eevere (Cles II. Priority corrosion cracking is foumd. hction) (P-78-7)
Train pup station personnel on putp mintenance procedures and hov to tell the difference between balas pressure losses caused by leaks and by pups $(1-72-8)^{\prime \prime}$

- Eo the Materiala Iraneportation Sureau of the U.S. Department of
Crpedice the phblishins of the Motice of Proposed Toleaking oa refulations for the safe transportation by plpelines of ilquefled petroleun gasea (IPG). Include a comprebensive section on the comunications required for the ale operation of LPG pipelines. (Clase II, Priority Action) (P-78-9)
"Include in proposed regulations a section ainilar (49 CR 192.615) plan section of the natural gas code iaformation to person will require operators to provide of a propane pipeline, and live or work vithin 220 yarda downill of a ITG pipeline to inile if located of LIC and how to coneat, about the particular hazards (Class III, Loaser Fernet emergency responee permonnel. (Clact10a) (P-78-10)
Maclude is proponed 49 CFR 195 regulations, provialona for checkina atural sas plpelines that are being corverted to liquefied petroleun gas (Lirg) service for Btrese-corrosion crackios. (clase III, Longer Term
Actioa) (M-7t-11)"

- te the Anerten Petrolou Insticute:

Participate in and encourage reaearch lnto streaecorrosion creckiag, empecially on older ateel gas pipeline that have been converted to liquid service. (Clas III, Longer Term Action) (P-78-12)
Cooduct field teats, using acoustic elseion testims techniques developed by the gas industry, to deternive If hishly atressed portions of liquid pipelimes ean by located, and stress-corrosion cracking can be detected Letica) (-78-13) (Claes III, Longer Term
"Conduct research to develop eome form of detector, elther as an odorant or irritant, of the presance of liquefied petrolen pes. The detector should be one chat oill mot contaninate the product or make it cauitable for use vith procesain catalysta. (Class III, Loager Term Action) $(\mathrm{P}-78-14)^{\text {M }}$

NTSB-PAR-78-2 PIPELINE ACCILENT REPORT - ALYESKA PIPELINE SERVICE CO. EXPLQSION AND FIRE, PUMP STATAION 8, NEAR FAIRBANKS, ALASKA, JULY 8, 1977

On July 8, 1977, during the initial startup of the Alaska pipeline, pump station 8 exploded and burned. As a result of the accident, one person was killed, five were injured, and the entire pipeline was shut down. Damage was estimated to be about $\$ 35$ million.

The NTSB determined that the probable cause of the accident was the failure of the poorly coordinated and inadequately supervised personnel at pump station 8 to follow the written procedures for performing maintenance work and starting the pump. Contributing to the accident was the absence of a sole authority or station manager in complete control of all station activities during the critical startup period. Contributing to the amount of crude oil spilled and to the explosion and fire was the inability of control room personnel tossee the activities going on in the pump room (located in another building) and the lack of safety and overriding controls in the pump room.

R\&D CONSIDERATIONS
No $R \& D$ requirements.

Mashington, D. C. 20594

15. Supplamentary Wotes

16.Astrect At

0, 197, the Alyesk Pipeline Service Company's thea burand. As a reault of this accidicast of Fairbanks, wlanka, exploded and vere injured alishtis, piop atation Mo. one person vas killed, five persone pipeline from Prudhoe bay to Valdez vas vas rendered inoperable, and the antire $\$ 35$ alluion.

The Retional Iramportation Safety Board deterninen that the probable cane of the aceldent ras the fallure of the poorly coordinated and landequately aupervioed perforning mintemace work and tollow presicely the uritten procedures for

Contribatims to the accideat was the abeence of a cole euthority or atation ericieal startup period

Coatributias to the mount of crude oll spilled, to the explraloa, ad to the Ifre there the inalility of the control room pareomel to see the activitien golns on In the pinp rooz, and the lack of coatrols ta the puop roon to eaable percongal in
 17.Key Mor'is Tramo-Nash pipelina; pup atation; explosion and fire ernde ell pipelina; Valdez Control Center; tralains progran; lislon flre syaten; special work pernite; enfo practices Nos. L and 16; pumpllo. 1 euction valve; prap Mo. 1 straber; motor control's electrical Lockout: pur atation los book.

TH. bistribution stacterent This docinept is evaliste to the poblic throwish the Maticaal Techalcal Inform tion Service, Sprionfield. Virginia 22152

CONCLUSIONS

Fradint

1. The Alyesk safety and operations manule were complote bot Myeske personnal did not strictly achere to these procedures.
2. There was no sole authority in charge of all phases of the operations at pump station No. 8 to insure strict compliance with the procedures or to coordinate the activities of the personnel to finure a safe atartup.
3. The malotenance personnel who removed the strainer from pump No. 1 did not use the required procedures to motify the pronp itation control room personnel of their work. In turn, the pump station control room personnal did not notify the maintenance crew of their decision to restart prump No. 1.
4. The complete lack of vialbility of the paup room fram the control room and the lack of controle in tise pump rown to chut down the pump and to control of override the velvee contributed to the accident.
5. The apraying and raporizing of the ciude $3 l l$ from the partially opened strainer top rapidly fillod the ens: , e pump room with an explosive mixture which 'risted.
6. The Halon fire extinguishing syotem, designed for enclosed areal only, could not function effectively because the explosion blew the roof off and the walle out of the promp room.
7. The tire foam eyotam could not have auccessfully axtinguiahed the meving, mascive, pump room tire.

Probeble Cause

The National Traneportation Safety Board determines that the probable cause of the aceident was the failure of the poorly coordinated and inndequately upervised personnal at pump station No. 8 to follow precisely the written procedures for performing maintanance work and etarting the pormps.

Contributing to the accident was the absence of a sole authority or station manager in complete control of all activities within the pump etation during this critical startup period.

Contributing to the amount of crude oil epilled, to the explosion, and to the fire were the inability of the control room personnel to see the activities going on in the pump room, and the lack of controls in the purnp room to arable personnel in that location to close or override the valves and to shut down the pump.

RECOMMENDATIONS

As a result of this accident investigation the National Tiansportation Safety Board made the following recommendations to the Alyeska Pipeline Service Compeny:
"Deaignate a manager or management team at each pump station with the reaponsibility and authority to supervise and require all personnel involved in the operation of the pump station to comply completely and consistently with all written procedurio during the atartup period and the continuing operations of uuch stations. (Clase I, Urgent Action) (P-77-16) (Insued July 15. 1977.)
"Review all procedures and practices which apply to pipelioe startup and the ensuing operation to insure that all ciftical actions will be done in a safe manner. Particular attention should be given to the interrelationshipe between those procedures which apply to startup and those which apply to the ensuing operations to insure complete coordiastion of functions. (Clase I, Urgent Action) (P-77-17) (Isened July 15, 1977.)

Mnstall a control in the pump room to shut down the parnpe from that location. (Clase I, Urgent Action) (P-77-21) (Iseued September 9, 1977.)
"Install a control in the pump room to operate the purnp valves from that location at any time. (Class I, Urgent Action) (P-77-22) (Is sued September 9, 1977.)
"Install a closed circuit-type video camera in the parap room and turbine room to allow the pump itation control center to monitor visually all activities at these locations. (Clase L. Urgent Action) (P-77-23) (Issued September 9. 1977.)
"Review its training program for adoquacy, reinstruct its personnel in the proceduree contained therein, and monitor the amployees to aseure their compliance with the required standards of alety for pipeline operation. (Clase II, Priority Action) (P-77-37)" (Issued December 13, 1977.1
Additional information regarding these recommen trined in appendix C.

NTSB-PAR-78-3 PIPELINE ACCIDENT REPORT - ATLANTA GAS LIGHT COMPANY, HIGH-
 PRESSURE GAS MAIN RUPTURE, ATLANTA, GEORGIA, DECEMBER 1, 1977

On December 1, 1977, a 12-inch, cast-iron, high pressure gas main owned by the Atlanta Gas Light Company was Euptured by an 8-inch steel I-beam pile, which was driven through the pipe at a construction site in downtown Atlanta. Within minutes, the natural gas at $10 \sim$ psig pressure migrated through the ground, entered sewer lines and electric conduit systems, and spread through them into nearby buildings. The area was evacuated. Fortunately, the gas did not ignite.

Construction had been in progress almost 2 months at the site, but the gas main had not been marked by the gas company. The NTSB determined that the probable cause of the accident was the fallure of the contractor to use information available to him on his blueprint. Although the contractor requested gas line locations via the one-call system, the gas company only located and marked some of its gas lines, not all of them in the area.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement.

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 1. Report No. } \\
\& \text { NTSB-PAR-78-3 } \\
\& \hline
\end{aligned}
\] \& \multicolumn{3}{|c|}{(} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
4. Title and Subtitle Pipeline Accident Report Atlanta Gas Light Company, High-Pressure Gas Main Rupture, Atlante, Georgia, December 1, \(197 \%\) \\
7. Author(s)
\end{tabular}}} \& \multicolumn{2}{|l|}{3.Recipient's Catalog No.} \\
\hline \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5. Report Date May 18, 1978}} \\
\hline \& \& \& \\
\hline \& \& \multicolumn{2}{|l|}{6. Performing Organization Code} \\
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{7. Author (s)}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8. Performing Organization Report No.}} \\
\hline \& \& \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
9. Performing Organization Name and Address \\
National Transportation Safety Board \\
Bureau of Accident Investigation \\
Washington, D.C. 20594
\end{tabular}}} \& \& \\
\hline \& \& \multicolumn{2}{|l|}{10.Work Unit

2360}

\hline \& \& \multicolumn{2}{|l|}{11.Contract or Grant No}

\hline \multicolumn{2}{|l|}{\multirow{4}{*}{| Sponsoring Agency Name and Address |
| :--- |
| NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 |}} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| 13. Type of Report and Period Covered |
| :--- |
| Pipeline Accident Report December 1, 1977 |}}

\hline \& \& \&

\hline \& \& \&

\hline \& \& \multicolumn{2}{|l|}{14.Sponsoring Agency Code}

\hline \multicolumn{4}{|l|}{15. Supplementary Notes}

\hline \multicolumn{4}{|l|}{\multirow[t]{7}{*}{| 16.Abstract At 1:00 p.m. e.s.t. on December 1, 1977, a 12-inch, cast-iron, highpressure gas main owned by the Atlanta Gas Light Company was ruptured by an 8-inch, steel I-beam pile, which was driven through the pipe at a construction site in downtown Atlante, Georgia. |
| :--- |
| Within minutes, natural gas at 10 -psig pressure migrated through the ground, entered sewer lines and electric conduit systems, and spread into nearby buildings. The gas did not ignite, but thousands of people were evacuated from nearby office buildings. A valve was closed at $2: 45 \mathrm{p}$.m. to shut off the flow of gas to the ruptured main, and the area was declared safe at 4:00 p.m. |
| The National Transportation Safety Board determines that the probable cause of the accident was the failure of the construction contractor to ube information available to him on his blueprint which resulted in the rupture of the 12-inioh, cast iron, high-pressure gas main by the contractor's 8 -inch, steel I-beam pile when it was driven through the pipe. Although the contractor requested gas line locations via the one-call notification system and although the gas company located and marked some of its lines, the gas company failed to mark all of the gas lines in the area. |
| Contributing to the accident was the fallure of the gas company to meet on-site with the contractor to specify which gas lines were to be located. |
| 17. Key Words |}}

\hline \& \& \&

\hline \& \& \&

\hline \& \& \&

\hline \& \& \&

\hline \& \& \&

\hline \& \& \&

\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Gas migration; emergency shutoff valves; one-call system; construction damage; evacuation; cast-iron; rupture.}} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151}}

\hline \& \& \&

\hline \& \& \&

\hline (of this report) UNCLASSIFIED \& 20. Security Classification (of this page) UNCLASSIFIED \& \multicolumn{2}{|l|}{21. No. of Pages ${ }^{\text {22.Price }}$}

\hline
\end{tabular}

CONCLUSIONS

Findings

1. The rupture of the 12 -inch cast-iron gas main was caused by the 8-inch, steel I-beam pile, which was driven through the pipe by the

- contractor.

2. At the time of the accident, the State of Georgia exempted contractors on municipal government projects from a requirement to notify gas companies before excavating.
3. Neither the construction company nor the gas company made it clear to each other which gas ines were involved in the construction project because both parties failed to meet with each other.
4. Although the gas lines were shown on the construction blueprints, the contractor apparently did not heed this information and did not make certain that the gas main was precisely located before any piles were driven in that location.
5. Federal regulations regarding the designation and location of emergency valves for high-pressure gas distribution systems are not adequate because they do not provide pipeline operators with requirements for the number and location of emergency valves.
6. The Atlanta Fire Department and the Atlanta Gas Light Company worked effectively together to evacuate buildings and eliminate ignition sources.

Probable Cause

The National Transportation Safety Board determines that the probable cause of the accident was the failure of the construction contractor to use information available to him on his blueprint which resulted in the rupture of the 12 -inch, cast-iron, high-pressure gas main by the contractor's 8-inch, steel I-beam pile when it was driven through the pipe. Although the contractor requested gas line locations via the one-call notification system and although the gas company located and marked some of its lines, the gas company failed to mark all of the gas lines in the area.

Contributing to the accident was the failure of the gas company to meet on-site with the contractor to specify which gas lines were to be

RECOMMENDATIONS

As a result of its investigation of this accident, the National Transportation Safety Board recommended that:
-- the George Hyman Construction Company:
"Require its employees to follow completely the instructions given by one-call notification systems. (Class II, Priority Action) (P-78-18)
"Instruct its employees to ascertain by all possible means the locations of underground facilities before excavating at a construction site. (Class II, Priority Action) (P-78-19)"
-- the city of Atlanta, Georgia:
"Request that a representative of each operator of an underground facility attend all pre-construction meetings for excavation projects contracted by the city. (Class II, Priority Action)
-- the Atlanta Gas Light Company:
"Instruct its employees to respond precisely to notices of planned excavations provided by one-call notification systems. (Class II, Priority Action) ($\mathrm{P}-78-21$)
"Develop a sectionalizing program of its high-pressure distribution system so that the location of designated valves will reduce the size of an affected area during an emergency. (Class II, Priority
Action) (P-78-22)" Action) (P-78-22)"

- the American Society of Mechanical Engineers Gas Piping Standards Comittee:
"Develop and issue guidelines to pipeline operators concerning the number and location of emergency valves in high-pressure gas distribution systems. (Class II, Priority Action) (P-78-23)"
- the Materials Transportation Bureau (Office of Pipeline Safety Operations):
"Amend 49 CFR 192.181(a) to specifically define the requirement for location and number of emergency valves. (Class III, Longer

NTSB-PAR-78-4 PIPELINE ACCIDENT REPORT - KANSAS PUBLIC SERYICE COMPANY,TNC, EXPLOSION AND FIRE, LAWRENCE, RANSAS, DECEMBER 15, 1977

In 1975, the Kansas Public Service Company, Inc., (gas company) inserted 394 feet of 2-inch, polyethylene plastic pipe in an abandoned 3-inch distribution etal joint was not made in compliand compression couplings. The plastic-toinstalled properly, nor inspected. The with regulations, anchored properly, or enough technically trained personnel gas company did not have any engineers Federal code provisions for this coupling understand and apply the various out of its 6 -inch long compression coupling installation. The plastic pipe pulled $2 \frac{1}{2}$-inches in length due to temperature chater after pipe had contracted

Subsequent tests have determined that the pullout resistance of plastic pipe in a standard compression coupling decreases with time. This indicates that more accidants of this type could occur involving the thousands of feet compression couplings. Ot that have been connected with standard long plastic pipe could be shorten have indicated that a 2-inch, 400-foot reduction and by 12.96 inches by a by 4.32 inches by a $10{ }^{\circ} \mathrm{F}$ temperature
reduction.
stiffeners used eves that standard compression couplings with smooth unless the pipeline is securely inserts more than 100 -feet long are unsafe possible linkage between the sizehored. The NTSB is also considering the safety of the system. The personnel and resources of the company and the technical capabilities if the number of smaller gas companies may have less to the size of the company.

R and D Considerations

1) Improve the design of anchoring to prevent pullout of plastic pipe in compression couplings.
2) Conduct further tests to determine the effect of time on the pullout resistance of standard compression couplings and polyethlyene
3) Plastic pipe.
used in additional tests on the more common types of mechanical joints plastic plastic pipe and internal stiffeners used to reinforce compatible with each what style of compression coupling is
4) Determine the each stiffener.
of coiled plastic pipe on its ultimate use.

Thermal contraction; polyethylene plastic pipe;

 compression couplings; pullout: main insertions; coiled plastic pipe; tensile tests; pullout resistance; destructive burst tests; late accident notification; written installation procedures; gas migration; fire; ignition.```
9.Security Classification
 (of this report)
 UNCLASSIFIED
```


## CONCLUSIONS

## Findings

1. Beginning shortly after its installation, and during the three winters, thermal contraction caused one end of the polyethylene plastic main to contract eight times and eventually its length was shortened by $31 / 2$ inches.
2. The pipeline had not been designed or constructed so that the tie-in compression coupling could contain the longitudinal forces created by thermal contraction of the plastic pipe within its 3 -inch steel casing as required by 49 CFR 192.273(a).
3. The plastic pipe had not been anchored to prevent it from pulling out of the coupling as required by 49 CFR 192.161(e).
4. The compression coupling and smooth steel stiffeners were manufactured by different companies and although they indivi joint that was weaker than the plastic plpe that was being joined and therefore the joint was in violation of 49 CFR 192.281(a).
5. The plastic pipe joint was not made in accordance with written procedures that had been proven by destructive burst tests to produce a joint that was as strong as the pipe being joined, as required by 49 CFR 192.281 (a).
6. When the contracting pipe pulled out of the compression coupling, the leaking gas was sealed by a concrete alley and migrated into the building foundation 5 feet away.
7. The pipe was not installed in accordance with the manufacturer's recommendation to use special plastic pipe cutters. The end of the pipe cut squarely using the special pipe cutters did not pull out, whereas the end of the pipe cut on a bias using a hacksaw did pull out.
8. The gas company did not have an inspector to assure that the joint was properly made and complied with the code, as required by 49 CFR 192.273(c).
9. When the pipe and coupling were pressurized, the torque relaxed 46.7 percent. An inspector could have directed the retorquing of the coupling nut to 100 percent, 15 to 30 minutes after the
10. Test results indicated that torque relaxation, internal pressure, temperature reduction, or pull rate were not the most significant factors in the pullout resistance of the pipe from the compression coupling. Pullout occurred in each of the above tests which proved that the joint was not as strong as the plastic pipe that was being joined.
11. Testing indicated a reduced pullout resiśtance by approximately two-thirds from 825 pounds to 300 pounds in the $21 / 2$-year-old test specimens.
12. In all of the tensile tests there was an increase in axial loading of approximately 125 pounds in the last $3 / 8$ inch of travel before pullout occurred. This "tail phenomenon" was first reported by the Safety Board in its Fremont, Nebraska, pipeline accident report. This 125-pound increase is due to the flared stiffener and is the reason the plastic pipe pulls almost all the way out of the coupling during extremely cold weather. After being allowed to relax over the next summer, the plastic will no longer require the 125 -pound additional force for pullout and can pull out of the coupling the following winter when the soil temperature again drops below the installation temperature by $10^{\circ} \mathrm{F}$ or more.
13. There was an unnecessary 8-hour delay in reporting this accident which was partially caused by waiting for business offices to open before the call was made.
14. The gas company in Lawrence did not have any engineers or enough technically trained personnel to understand and apply the various Federal code provisions to this coupling installation.

## Probable Cause

The National Transportation Safety Board detemines that the probable cause of the accident was the failure of the gas company to properly design, install, test, inspect, and anchor the installation of a $394-$ foot-long polyethylene plastic gas main that had been inserted in a casing and connected to a steel gas main with a compression coupling. The $21 / 2$-year-old unrestrained plastic gas main contracted $31 / 2$ inches because of cold temperatures and pulled out of the compression coupling, the resistance of which had decreased with age.

## RECOMMENDATIONS

As a result of its investigation of this accident, the National Transportation Safety Board made the following recommendations:
--to the Ransas Public Service Company, Inc:
"Complete the review of its plastic pipe systems before the 1978-79 winter season for other unanchored insertions more than 100 feet long, and rectify any potentially hazardous conditions found. (Class II, Priority Action) (P-78-25)
"Require an engineer or engineering consultant firm to review the design of its plastic pipeline system, including the design of anchors, so there are safeguards to prevent pullout at the mechanical joint for each pipe size and insertion length. (Class II, Priority Action) (P-78-26)
"Conduct destructive burst tests on each type of joint by which a plastic pipeline is connected to insure that the joint is as strong as the pipe being joined. (Class II, Priority Action) (P-78-27)
"Write installation procedures on how to make up each type of plastic pipe joint based on tests that have proven that the joint Is as strong as the pipe being joined, and test employees on compliance and proficiency. (Class II, Priority Action) (P-78-28)
"Designate emergency shutoff valves on system maps and provide these maps to personnel on emergency call status. (Class II, Priority Action) (P-78-29)
"Issue an emergency plan that conforms to 49 CFR 192.615 and train emergency response personnel to insure that they are knowledgable of the emergency procedures, including the evacuation procedures and the emergency shutdown of the system. (Class II, Priority Action) (P-78-30)
"Train an installation inspector on the various code provisions and have him inspect each joint for code compliance. The time required for temperature stabilization of inserted plastic pipe and the torque requirements of compression couplings should especially be inspected. (Class III, Longer Term Action) (p-78-31)
"Include in its emergency plans the after-hours telephone numbers of the various agencies to which accidents must be reported, and instruct emergency response personnel to notify the appropriate officials at the earliest possible opportunity after hazards to life and property have been eliminated. (Class II, Priority Action) (P-78-32)"
-to the Materials Transportation Bureau of the U.S. Department of Transportation:
"Reconsider its responses to safety recommendations P-76-44 and P-76-45 in light of this and other accidents that have occurred with plastic pipe and 'standard' compression couplings since 1977. (Class I,
Urgent Action) ( $\mathrm{P}-78-33$ )"

## -to the American Gas Association:

"Conduct tests to determine the effect of time on the pullout resistance of standard compression couplings and polyethylene plastic pipe. (Class III, Longer Term Action) (P-78-34)
"Conduct tests on the more common types of mechanical joints used on plastic pipe. Publish the results of these tests to member companies along with the recommendations of the manufacturers regarding whether the joint should be used for gastightness only or also for pullout resistance. (Class III, Longer Term Action) (P-78-35)
"Conduct tests on the more common internal stiffeners used to reinforce plastic pipe. Determine what style of compression coupling is compatible with each stiffener. (Class III, Longer Term Action) (P-78-36)
"Determine the effect of polymer aging, outdoor exposure, and stacking of coiled plastic pipe on its ultimate use. Specify to the natural gas industry what tests should be conducted on the pipe to prove its integrity if excessive storage is found to be detrimental. (Class III, Longer Term Action) (P.-78-37)"

## --to the Dresser Manufacturing Company:

"Enclose strongly worded warning literature in each box of Style 90 couplings shipped indicating that this standard compression coupling is NOT recommended for connecting long lengths of inserted plastic pipes or the anchoring of plastic pipe. (Class II, Priority Action) (P-78-38)
"Provide test data to the American Gas Association and make recommendations to them as to what the safe application should be for each fitting that Dresser manufactures to join plastic pipe. (Class III, Longer Term Action) (P-78-39)
"Investigate the possibility of setting up a testing laboratory where customers can send in samples of plastic pipe and inserts to be tested with couplings and then be provided certified results of the tests and application recommendations. (Class III, Longer Term Action) (P-78-40)"
--to the E.I. du Pont de Nemours \& Company:
"Enclose warning literature and installation instructions in each carton of internal stiffeners indicating that the stiffeners do not provide any anchoring properties, and that it is the gas company's responsibility to properly design and install plastic pipelines in accordance with the applicable provisions of 49 CFR 192. (Class II, Priority Action) (P-78-41)
"Work with the American Gas Association and the Society of the Plastic Industry, Inc., to conduct tests to determine the effect of time on the pullout resistance of polyethylene plastic pipe and standard compression couplings. (Class III, Longer Term Action) (P-78-42)"

BY THE NATIONAL TRANSPORTATION SAFETY BOARD
/s/ $\frac{\text { JAMES B. KING }}{\text { Chairman }}$
/s/ $\frac{\text { FRANCIS H. MCADAMS }}{\text { Member }}$
/s/ $\frac{\text { PHILIP A. HOGUE }}{\text { Member }}$
/s/ $\frac{\text { ELWOOD T. DRIVER }}{\text { Member }}$

July 5, 1978

NTSB-PAR-78-5 PIPELINE ACCIDENT REPORT - THE GAS SERVICE COMPAAY NATURAL GAS PIPELINE, RUPTURE AND FIRE, KANSAS CITY, MISSOURI, JUNE 12,1978

On June 12, 1978, a 10-inch pipeline owned by the Gas Service Company was struck and ruptured by excavation equipment operated by an unsupervised equipment operator during constructin of a sewer in Ransas City. Two hours after the rupture, the 48 -year old pipeline was being repaired when leaking gas ignited and burned two members of the repair crew.

On June 6, 1978, the contractor called the gas company dispatcher and requested that the location of the gas pipeline be marked in an area where he was installing an 18-inch clay tile sewer. A gas company inspector located the 10 -inch pipeline with an electronic pipe locator and placed two flags over it 75 feet apart, one on each side of the permanent sewer easement. The contractor did not ask,nor :.was he told about the depth of the pipeline (which was only 2 feet deep).

The NTSB investigation showed that the contractor was clearly in violation of the law requiring that underground facilities be located (horizontally and vertically) in advance of and during the excavation. This should have been done by digging test holes or requesting the gas company to determine the depth of the pipeline.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement

|  |  |
| :---: | :---: |
|  | 3. Recipient's Catalog No. |
| The Gas Service Company, Natural Gas Pipeline Rupture and Fire, Ransas City, Missouri, June 12, 1978 | 5. Report Date December 7, 1978 |
| 7. Author(s) | 6.Performing Organlzation Code |
|  | 8. Performing Organization Report No. |
| 9. Performing Organization Name and Address <br> National Transportation Safety Board <br> Bureau of Accident Investigation <br> Washingtun, D.C. 20594 |  |
|  | $\begin{gathered} \hline \text { 10. Work Unit No. } \\ 2533 \\ \hline \end{gathered}$ |
|  | 11. Contract or Grant No. |
|  | 13.Type of Report and Period Covered |
| 12. Sponsoring Agency Name and Address <br> NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 | Pipeline Accident Report June 12, 1978 |
|  | 14. Sponsoring Agency Code |
| 15. Supplementary Notes |  |

16.Abstract

At 1:30 p.m., c.d.t., on June 12, 1978, a 10 -inch pipeline owned by the Gas Service Company was struck and ruptured by excavation equipment during construction of a sewer in Ransas City, Missouri. Natural gas, at more than llo-psig pressure, ignited from a 5 -inch-long hole in the 2 -foot-deep pipeline. At $3: 15$ p.m., the gas to installing a pipe repair clamp.

The National Transportation Safety Board determines that the probable cause of the accident was the rupture of the pipeline by heavy excavating equipment operated by an unsupervised equipment operator. The sewer contractor had falled to previously establish the exact horizontal and vertical locations of the pipeline either by digging test holes or by requesting the gas company to locate the pipeline more the escaping natural gas hand tools used to clean the pipe prior to its repair ignited escapling natural gas which seriously burned two gas company employees.

## 17. Key Words

| Excavation damage; equipment operator; pipeline rupture; working foreman; pipe-cleaning tools; emergency valve; repair clamp; protective clothing; emergency plan; pipeline cover; State excavation damage laws; electronic pipe locator. |  | 18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151 |  |
| :---: | :---: | :---: | :---: |
| 19. Security Classification (of this report) UNCLASSIFIED | 20. Security Classification (of this page) UNCLASSIFIED | 21. No. of Pages ${ }^{24}$ | 22.Price |

In this accident, several aspects of employee safety were not covered by Federal regulations. Although the hard hats and safety goggles did provide some burn protection and possibly saved the vision of the infured men, a hood and flame-resistant coveralls and gloves, which are not currently required by Federal regulations, would have provided more protection. The MTB should either set clothing standards for gas employee safety or assist OSHA in establishing standards for gas company soon as possible.

Polyester work clothing should be banned for all working around blowing gas where ignition could occur gas company employees on fire. In this accident, the worker wearing occur and set their clothes work uniform supplied by the company was burn the short-sleeve polyester though his flaming clothes were extinguished more severely -- even than the worker who wore cotton clothing includin the fire extinguisher -

CONCLUSIONS

## Findings

1. The contractor violated Missouri law because he did not locate the pipeline in advance of the excavation work.
2. The contractor did not make a diligent effort to precisely establish the location and depth of the pipeline by digging tests holes, as called for in the construction specifications, before using excavation equipment in the vicinity of the pipeline.
3. No pipeline depth measurements were made by the gas company, contractor, or consulting engineer when the pipeline was exposed for maintenance in the spring of 1978.
4. The horizontal location of the buried pipeline was accurately flagged by a gas company inspector 1 week before the accident.
5. The contractor's first telephone inquiry about the depth of the pipeline, 2 hours before the accident, was not followed up by a second call for an inspector to establish the exact depth of telephone inquiry.
6. The contractor's superintendent did not give adequate instructions to the operator of the highloader concerning the gas pipeline's location and depth before the operator started the excavation.
7. The crossing of the pipeline at a 60 -degree angle brought the west it would have been at the centerline of the sewer, and its shallow nerable to excavation damage. The gas company crew had received on-the-job training, but they did not have formal training about how repairs to higher pressure mains.
8. There was a communication problem between the gas company foreman and his supervisor concerning the installation of a repair clamp because of the roar of the blowing gas.
9. The hand tools used by the gas company workers to clean the pipeline were made of steel and generated the spark that ignited the blowing gas.
10. The dry chemical fire extinguisher and three water streams from the fire engine pumpers were not sufficient to extinguish the large gas fire when the pressure was about 80 psig.
11. The pipeline crossing location would have been more noticable to everyone in the contractor's crew if the 3 -foot-high weeds had been cleared from the pipeline right-of-way and around the permanent markers.
12. The gas company had no procedures that stated what a "safe"
repair pressure might be.

## Probable Cause

The National Transportation Safety Board determines that the probable cause of the accident was the rupture of the pipeline by heavy excavating equipment operated by an unsupervised equipment operator. horizontal and vertical failed to previously establish the exact test holes or by requesting the gas company pipeline either by digging precisely. Sparks from hand tools used to to locate the pipeline more repair ignited the escaping natural gas which serio pipe prior to its company employees. gas which seriously burned two gas

## RECOMMENDATIONS

As a result of its investigation of this accident, the National Transportation Safety Board made the following recomendations:

## - to the Gas Service Company:

"Improve liaison with the municipalities and consulting engineers within its operating area and request that the gas company be notified of all preconstruction meetings to determine if gas facilities will be affected by the construction activities. (Class II, Priority Action) (P-78-68)
"Improve commications and cooperation between its engineering and field personnel to insure that responsible gas company employees are aware of a contractor's questions regarding gas facilities as the contractor's work progresses. (Class II, Priority Action) ( $\mathrm{P}-78-69$ )
"Require its personnel to record all information requested on the Pipe Condition Report Form. Any pipeline depth of less than the minimum required in 49 CFR 192.327 should be carefully noted ( $\mathrm{P}-78 \mathrm{p}-70$ ) maps and other records. (Class II, Priority Action)

> "Revise its emergency plan to show what segments of a pipeline can be taken out of service for repairs, and establish the maximum safe operating pressures for repairs to such pipelines. (Class II, Priority Action) (P-78-71)
"Revise its emergency plan to include all of the liaison and coordination requirements of 49 CFR 192.615, and provide training material to local fire departments about the hazards of extinguishing gas fires. (Class II, Priority Action) (P-78-72)
"Include in company maintenance procedures the requirement that vegetation on pipeline rights-of-way and around line marker signs be cleared before construction equipment is used near gas pipelines. (Class II, Priority Action) ( $\mathrm{P}-78-73$ ) 18 usear gas pipelines.
"Require the use of flame-retardant material in the uniforms of personnel required to work in gaseous atmospheres. (Class II, Priority Action) (P-78-74)
"Train its distribution repair crews to work safely on highpressure transmission pipelines. (Class II, Priority Action)

## -- to the Torson Construction Company:

"Protect pipelines to be crossed during construction by verifying the location, elevation, and dimensions of all known or suspected underground obstructions ahead of the work and hy reviewing all (Class II, Priority specifications with its field supervisor. (Class II, Priority Action) (P-78-76)
"Establish an early liaison with the gas company before commencement of construction projects and coordinate the field activities of the construction crews to afford maximum protection of pipeline facilities. (Class II, Priority Action) (P-78-77)
"Require its employees to precisely establish the horizontal and vertical locations of gas pipelines by means of hand-excavated test holes before allowing heavy excavation equipment in the area of a pipeline crossing. (Class II, Priority Action) (P-78-78)" U.S. Department of Labor:
"Establish standards for gas industry safety clothing to protect workers repairing leaking gas pipelines where ignition of the (P-78-79)" cause serious burns. (Class III, Longer Term Action)
-- to the Governor, State of Missouri:
"Amend State law to specify the use of hand-excavated test holes, or other proven, accurate method, to establish a precise depth or location of the underground facility, and to establish a wide buffer zone beside a pipeline location, over which heavy equipment cannot operate, to allow for errors in establishing the approximate location of underground facilities. (Class III, Longer Term Action)

[^11]12. PIPELINE ACCIDENT REPORTS AND SPECIAL STUDIES, CY-1979

The following three pipeline accident reports were published during CY-1979. No pipeline safety studies were issued.

| NTSB-PAR-79-1 | Pipeline Accident Report - Mid-America Pipeline System, <br> Liquified Petroleum Gas Pipeline, Rupture and Fire, <br> Donnellson, Iowa, August 4, 1978 |
| :--- | :--- |
| NTSB-PAR-79-2 | Pipeline Accident Report - Gas Service Co., Explosion and <br>  <br> Fire, London, Kentucky, January 16, 1979 |
| NTSB-PAR-79-3 | Pipeline Accident Report - Natural Gas Pipeline Rupture <br> Explosion and Fire, Philadelphia, Pennsylvania, May 11, <br> 1979 |

> NTSB-PAR-79-1 PIPELINE ACCIDENT REPORT - MID-AMERICA PIPELINE SYSTEM, LIQUIFIED PETROLEUM GAS PIPELINE, RUPTURE AND FIRE, DONNELLSON, IOWA,
AUGUST 4, 1978 .

On August 4, 1978, an 8-inch LPG pipeline under approximately 1200psig pressure ruptured in a cornfield near Donnellson, Iowa. Propane leaked from a 33 -inch long split and vaporized. The heavier-than-air gas rapidly spread out across a highway and eventually covered 75 acres of woods and fields and surrounded a farmhouse and its facilities. The propane vapors were then ignited by an unknown source.

Two volunteer fire departments arrived,but neither one knew the locations of any shutoff valves, nor did they know who could help them locate the valves.

The NTSB determined that the probable cause of the failure of the 8 -inch pipeline was due to the combined stresses that were exerted on the pipeline when it was lowered 3 months before the accident in conjunction with highway excavation work, and, more importantly, to a dent and gouge which had weakened the pipe. The dent and gouge had been incurred before the pipeline had been completed in 1962.

Among the recommendations made by the NTSB to the pipeline company were increased training of emergency response personnel and updating of the list of key personnel to close specific valves.

## R \& D CONSIDERATIONS

1) Determine by analytical means the stresses produced on steel pipeline when it is lowered, and design a safety factor to insure that these stresses will not affect the integrity of the line.
2) Undertake research for more stringent specifications for pipeline manufactured for LPG service to minimize the effects of dents and gouges.

TECHNICAL REPORT DOCUMENTATION PAGE

| T. Report No: |  |
| :--- | :--- | :--- |
| NTSB-PAR-79-1 | 2.Government Accession No. |
| 4. Title and Subtitle Pipeline Accidant Report - |  |
| Mid-America Pipeline System Liquefied Petroleum Gas <br> Pipeline Rupture and Fire, Donnellson, Iowa, <br> August 4. 1978 |  |
| 7. Author(s) |  |
| 9. Performing Organization Name and Address |  |
| National Transportation Safety Board <br> Bureau of Accident Investigation <br> Washington, D.C. 20594 |  |

## CONCLUSIONS

## Findings

1. The rupture in the 8 -inch propane pipeline was due to the combined stresses that were exerted on the pipeline when it was lowered 3 months before the accident.
2. The failure occurred at an area on the pipe that had been dented and gouged previously.
3. The dent and gouge in the pipe occurred sometime between manufacture of the pipe and the construction of the pipeline.
4. The leaking propane vaporized and migrated over a 75-acre area within minutes before it was ignited by an unknown
5. Due to operating procedures at that time, MAPCO's personnel did not realize there was a leak in the system until 25 minutes after the rupture occurred.
6. If the valve at Birmingham Junction had been closed at the time of the accident the pressure drop would have been larger and would have rapidly shown the trouble to be on the Farmington section of the pipeline.
7. Public emergency response personnel who responded to the accident had not received any instruction or education from MAPCO on the hazards of LPG and how to handle an LPG fire.
8. MAPCO's list of persons to contact to close specific valves for the Farmington lateral in case of an emergency was not kept current nor was it used by the dispatcher.
9. The OPSO has not differentiated between highly volatile liquid petroleum pipelines and other liquid petroleum pipelines in its regulations for liquid petroleum transportation.
10. The OPSO should expedite action on Safety Board recommendations
concerning LPG regulations.

## Probable Cause

The National Transportation Safety Board determines that the probable cause of the accident was the failure of an 8-inch propane pipeline due to the combined stresses that were exerted on the pipeline when it was lowered 3 months before the accident and to a dent and gouge which had weakened the pipe. The dent and gouge had been incurred before the pipeline had been completed in 1962.

## RECOMMENDATIONS

During its investigation of this accident, the National Transportation Safety Board recommended that the Mid-America Pipeline System:
"Update the list of individuals who should be contacted to close specific valves in the event of an emergency and institute a procedure to assure that the list is updated at least annually. (Class I, Urgent Action) (P-78-66)
"Conduct periodic training for public emergency response agencies along the route of its pipelines. As a minimum, this training should be conducted annually and be sufficient to inform emergency response agencies of the properties of the various products transported, the expected behavior of each product when released to the atmosphere, the locations of shutdown valves, the residents designated to operate each valve, and other information necessary for emergency response personnel to take effective actions and minimize losses. (Class I, Urgent Action) (P-78-67)"

As a result of its complete investigation of this accident, the National Transportation Safety Board made the following recommendations:
-- to the Mid-America Pipeline System:
"Determine by analytical means the stresses produced on the pipe steel when projects require the lowering of a section of pipeline, and design a safety factor to insure that these stresses will not affect the integrity of the line. (Class II, Priority Action) (P-79-2)
"Establish written procedures that require its personnel to ascertain that precautions are taken in the field to eliminate excessive or sudden changes in elevation when lowering a section of pipeline. (Class II, Priority Action) (P-79-3)
"Emphasize to its pipeline construction inspection personnel the importance of careful, thorough inspection to minimize the occurrence of dents and gouges which could result in similar accidents. (Class II, Priority Action) (P-79-4)
"Check all other segments of its pipeline for conditions similar to the open valve condition in the line section involved in this accident and make changes or additions as required. (Class II, Priority Action) (P-79-5)"

On January 10, 1979, personnel exployed by the Gas Service Co., began installing repulators to increase the gas pressure in a downtown business section of London, Kentucky. The 7 -inch bare steel gas main, installed in 1930 and 1931, was to be uprated from 4 ounces to 17 psig pressure. Personnel continued work through the weekend and repaired some leaks where detected.

On January 16,1979, natural gas, which had escaped from a large corrosion hole in the 7 -inch main and had accumulated in several buildings nearby,exploded and then burned. Five buildings were destroyed, two more damaged extensively, windows within a five-block radius were shattered, and a truck damaged. Two persons were injured slightly.

The condition of the 7-inch steel pipe, which had never been cathodically protected against corrosion, indicated that corrosion had existed for a considerable period of time. A complete leakage survey would have indicated the condition before the system was uprated.
$R \& D$ CONSIDERATIONS
No $R \& D$ requirement.


| 17. Key Words |  |  |  |
| :---: | :---: | :---: | :---: |
| Pipe corrosion; uprating; written procedures; combustible gas indicator; sewer manhole gas check; personnel evacuation; 7-inch diameter bare steel gas main; area gas check; sudden pressure increase. <br> 19. Security ci |  | 18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Springfield, VA 22151 |  |
|  |  |  |  |
| (of this report) UNCLASSIFIED | 20.security Classification (of this page) | 21.No. of Pages | 22.Price |

## CONCLUSIONS

## Findings

1. The 7-inch-diameter bare steel gas main had not been cathodically protected against corrosion nor adequately surveyed to determine areas of active corrosion as required by 49 CFR 192.453, 49 CFR 192.457, and the gas company's standards.
2. Three corrosion holes were found in the bare steel gas main after the accident; one hole measured over 1 inch in diameter.
3. Before the uprating, while the gas main was operating at 4 ounces of pressure, there was probably no leakage or minimal leakage from these corrosion holes because of the well-compacted dirt around the pipe.
4. After the gas pressure was increased to 17 psig, the well compacted dirt around the pipe at the corrosion holes was insufficient to contain the gas within the pipe.
5. Gas company personnel should have increased the pressure in the gas main from 4 ounces to 17 psig in at least two stages: from 4 ounces to 8 psig and from 8 psig to 17 psig, as required by 49 CFR 192.557.
6. Between stages of uprating, at 8 psig and again at 17 psig , gas company personnel should have surveyed the gas main for leakage, using a combustible gas indicator and checked the sewer manholes, as required by 49 CFR 192.553(a)(1), 49 CFR 192.723(b) (1), and the gas company's standards. This would have revealed the presence of the leak.
7. The gas company's operation and maintenance plan had no conversion procedures for uprating to higher pressure as required by CFR 192.605 (d).
8. The gas company falled to establish a written procedure for the proposed uprating as required in 49 CFR 192.553(c).
9. The gas company did not adequately review the facilities to be uprated as required by 49 CFR 192.557 (b) (1).
10. The leak detection survey, which preceded the uprating by 5 months, did not include a sewer manhole survey, as required by 49 CFR 192.557 (b) (2) and 49 CFR 192.723(b) (1).
11. The occurrence of the accident at night when the commercial buildings in the downtown area were closed and unoccupied, prevented numerous fatalities and injuries.

## Probrble Cause

The National Transportation Safety Board determines that the probable cause of the accident was the ignition of an accumulation of natural gas which had leaked from an existing corrosion hole in a 7-inch steel gas in one step. Contribe was increased suddenly from 4 ounces to 17 psig company personnel to gas indicators (CGI), anduct an adequate leak survey, using combustible period the gas pressure was check adjacent sewer manholes during the was a spark from an electric increased. A possible source of ignition otor in a beverage cooler.

## RECOMMENDATIONS

As result of its investigation of this accident, the National Transportation Safety Board made the following recommendations:

- to the Delta Natural Gas Company, Inc.:
"Determine the condition of other cathodically unprotected pipe which may be comparable to the failed pipe, and develop a schedule for system improvement based on the findings. (Class II, Priority Action) ( $P-79-9$ )
"Develop written uprating procedures sufficient to comply with requirements of 49 CFR 192 Subpart $K$ and related American Society of Mechanical Engineers guide material. (Class II, Priority Action)
"As a part of the uprating procedures, provide the project foreman with a written plan that will account for the specific elements and variables of each case before the commencement of any uprating project. (Class II, Priority Action) (P-79-11)
"Train all personnel involved with uprating procedures to insure knowledge of applicable regulations and written company uprating procedures. (Class II, Priority Action) (P-79-12)'
to the American Gas Association:
"Advise its member companies of the circumstances of this accident and urge them to review their actual operating practices for uprating pipelines to insure that they conform to established company procedure, related industry guidelines, and Federal regulations. (Class I, Urgent Action) (P-79-13)"
- to the Materials Transportation Bureau of the U.S. Department of Transportation:
"Monitor, through its State agent, the Kentucky Public Service Commission, the activity of the Gas Service Company, Inc., to uprate its gas distribution system in London, Kentucky, in compliance with the Federal regulations. (Class II, Priority

BY THE NATIONAL TRANSPORTATION SAFETY BOARD
/s/ JAMES B. KING
Chairman
/s/ ELWOOD T. DRIVER
Vice Chairman
/s/ PATRICIA A. GOLDMAN
Member
/s/ G. H. PATRICK BURSLEY
Member

FRANCIS H. McADAMS, Member, did not participate.
August 16, 1979

## NTSB-PAR-79-3 PIPELINE ACCIDENT REPORT - NATURAL GAS PIPELINE

 RUPTURE, EXPLOSION AND FIRE, PHILADELPHIA, PENNSYLVANIA, MAY 11, 1979On May 11, 1979, two almost simultaneous explosions and an ensuing fire occurred in Philadelphia, Pennsylvania. Seven persons, including a gas company ecmployee were killed, 19 persons were injured, three buildings were destroyed, and seven adjacent rowhouses were damaged. The explosion also caused a section of the street to cave in, exposing a large cavern under the paved surface.

The NTSB determined that the probable cause of the accident was the sagging and breaking of an 8 -inch, cast-iron gas main, due to the undetected erosion of the soil support under it, resulting in the migration of the leaking gas into adjacent buildings where it was ignited by an undetermined source.

R\&D CONSIDERATIONS
No R\&D requirement.


## CONCLUSIONS

## Findings

1. The large cavern under Margaret Street, which contained the gas, sewer, and water mains had been created over a period of time by soil
erosion.
2. Seepage from the openings in the main sewer caused by the broken laterals contributed to the erosion that caused the cavern.
3. Water escaping from the water main also probably contributed to the
erosion.
4. The water main probably had been cracked some time before the accident as revealed by metallurgical analysis which showed adhesive corrosion products on the fracture faces and corrosion of the fracture face itself. Complete severance of the water pipe occurred at the time
of the gas main failure.
5. The gas main had been undermined by the soil erosion and had been hanging unsupported for a long time before it broke.
6. The gas main failed at $2: 30$ p.m. when it broke into three pieces from one or a combination of factors such as the pipe's own weight, traffic vibrations, pavement settling, or other unknown outside forces.
7. Liaison between PGW and the Philadelphia Fire Department resulted in the prompt evacuation and effective ventilation of affected houses in the accident area.
8. Prompt "greasing off" of the gas mains by PGW prevented additional
migration of natural gas to the affected area.

## Probable Cause

The National Transportation Safety Board determines that the probable cause of the accident was the sagging and breaking of an 8 -inch, cast-iron gas main, due to the undetected erosion of the soil support under it, resulting in the migration of leaking gas into adjacent buildings where it was ignited by an undetermined source.

## RECOMMENDATIONS

As a result of its investigation of this accident, the Nationsl Transportation Safety Board recommendated that the American Gas Association:
"Advise its member companies of the circumstances of this accident and of the prompt and effective coordination betwen the gas company and the fire department and urge them to review their emergency practices and procedures, particularly those concerning evacuation and liaison with fire and police departments to insure that coordination is planned adequately for similar accidents. (Class II, Priority Action) (P-79-59)"
13. SUMMARY

During the period CY-70 to CY-79, a total of 40 pipeline accident reports and special studies have been issued by the National Transportation Safety Board.

A summary of these documents indicating the cause, pipeline type, personal losses or injuries (if any) and property damages follows. This summary is a major component to any data base on pipeline transportation safety.

| External forcesdamaged regulator | Natural gas ..... | 0 | 0 | \$80 thousand | PAR-70-1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pipe rupture along weak zone in resistance weld caused by improper pressure regulation | $\begin{aligned} & \text { 14-Inch } \\ & \text { natural gas } \end{aligned}$ | 0 | 9 | \$500 thousand | PAR-71-1 |
| Flaw in pipe which failed during period of fluctuating pressure | cast-iron gas main | 0 | 5 | None reported | $\therefore$ PPAR-71-2 |
| Rupture of insufficiently bonded weld weakened by internal corrosion and higher than normal pressure | $\begin{aligned} & \text { 8-inch } \\ & \text { uncoated LPG } \end{aligned}$ | 0 | 10 | Extensive | PAR-72-1 |
| Failure of personnel to shut-off gas while repairing line | Natural gas | 6 | 3 | None reported | PAR-72-2 |
| Soil stresses on pipe and galvanic action on pipe threads | Galvanized stee1 natural gas | 4 | 1 | 1 house destroyed, 1 garage damaged | PAR-72-3 |
| External force - struck by backhoe | 2-inch, wrapped steel gas line | 3 | 1 | 2 houses destroyed, <br> 1 damaged, $\$ 153 \mathrm{~K}$ | PAR-72-4 |
| Improperly installed tee-connection and external forces of construction equipment and heavy rainfall | Plastic pipe natural gas | 0 | 1 | 1 house destroyed | PAR-72-5 |
| External force - struck by bulldozer | 3/4-inch stee 1 gas line | 6 | 10 | None reported | PAR-73-1 |
| Excessive pressure and corrosion | 8-inch steel <br> 1iquid pipeline | 1 | 2 | 1 house destroyed, 300,000 gals. oil | PAR-73-2 |
| Uneven soil settlement and corrosion | $\begin{aligned} & \text { 6-inch, cast-iron } \\ & \text { gas main } \end{aligned}$ | 1 | 7 | Not reported | PAR-73-3 |
| External force by too heavy dynamite charges during construction project | 8-inch bare steel gas main | 5 | 16 | 2 buildings destroy | ed PAR-74-1 |
| Broken threads in a cast-iron reducer fitting | cast-iron gas main | 7 | 8 | 7 apt units destroy | ed PAR-74-2 |


| Soil stress \& vibration from nearby railroad | 4-inch, castiron gas main | 8 | 7 | Not reported, | PAR-74-3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Corrosion in cathodicallyunprotected pipe | 2-inch, bare steel gas main | 3 | 2 | 1 house destroyed | PAR-74-4 |
| Stress point created in pipe during manufacture | $\frac{1}{2}$-inch plastic pipe | 3 | 1 | 1 house badly damaged | PAR-74-5 |
| Excess pressure caused by valve failure in pipe weakened by gouge | liquid pipeline anhydrous ammonia | 0 | 2 | None reported | PAR-74-6 |
| Failure of substandard girth weld due to repeated soil stress | 30-inch, coated, wrapped, \& cathodically protected gas pipeline | 0 | 0 | 10 acreas of forest burned | PAR-75-1 |
| Hydrogen stress crack at hardspot in pipe created during mfr | 30-inch, coated \& wrapped natural gas pipeline | 0 | 0 | None reported | PAR-75-2 |
| Brittle fracture of flash weld weakened by crevice corrosion | 12-inch natura1 gas pipeline | 3 | 0 | None reported | PAR-75-3 |
| Rupture caused by internal corrosion \& hydrogen embrittlement | $\begin{aligned} & \text { 6-inch, coated \& } \\ & \text { wrapped (cathod- } \\ & \text { ically unprotected) } \\ & \text { gas pipeline } \end{aligned}$ |  | 1 | 3 vehicles destroyed, 40 acres forest | PAR-76-1 |
| Break caused by exploding tank in cellar (hydro-pneumatic tank) $\qquad$ | 6-inch gas service 1ine |  | 70 | 25-story building seriously damaged, other bldgs damaged | PAR-76-2 |
| Excessive pressure caused by inadvertant closing of a motor-operated valve | 12-inch liquid pipe 1 |  | 0 | 1 building destroyed | PAR-76-3 |


| Attempted repair of leak in a cracked fillet weld | $\begin{aligned} & \text { 26-inch liquid } \\ & \text { pipeline } \end{aligned}$ | 6 | 1 | None reported | PAR-76-4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rupture in weakened area of pipe caused by a gouge | 8-inch, natural gas liquid pipeline | 4 | 0 | Tel.\& pwr lines destroyed, RR tracks damaged, forest area burned | PAR-76-5 |
| Contraction of pipe (due to cold temp.) causing it to pull out of compression coupling | $\begin{aligned} & \text { 2-inch plastic } \\ & \text { gas line } \end{aligned}$ | 20 | 29 | 1 hotel destroyed | PAR-76-6 |
| Excess pressure in pipe which had been previously dented \& gouged | 8-inch, liquid pipeline | 0 | 9 | 4 houses destroyed, 3 damaged, 12 vehic burned, 2389 barrel propane consumed | $\begin{gathered} \text { PAR } \\ \text { es } \end{gathered}$ |
| Rupture by excavation equipment | $\begin{aligned} & \text { 8-inch 1iquid } \\ & \text { pipeline } \end{aligned}$ | 9 | 14 | Extensive | PAR-76-8 |
| Rupture by construction equipment | $\begin{aligned} & 20-\text { inch gas } \\ & \text { transmission } \end{aligned}$ | 6 | 1 | Extensive | PAR-77-1 |
| Structural weakness by corrosion and soil settling | 4-inch, castiron, gas main | 1 | 14 | 4 buildings destroye <br> 7 buildings damaged | d,PAR-77-2 |
| Failure of studs on valve cover caused by overtightening | natural gas compressor | 1 | 2 | Over \$5 million | PAR-77-3 |
| Thermal contraction (due to cold temp) of a substandard weld stressed by nearby sewer construction | $\begin{aligned} & \text { 4-inch gas } \\ & \text { main } \end{aligned}$ | 2 | 23 | 2 houses destroyed | PAR-78-1 |
| Stress-corrosion cracking of pipe subjected to earth subsidence | propane pipeline <br> 12-inch liquid propane pipeline | 2 | 0 | 1 truck destroyed, 57 head of cattle killed, pwr \& tel lines destroyed | PAR-78-1 |


| Human error | Pumping station on Alaska pipeline | 1 | 5 | \$35 million | PAR-78-2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rupture by construction equipment | 12-inch, castiron gas main | 0 | 0 | None reported | PAR-78-3 |
| Thermal contraction (due to cold temp) caused pipe to pull out of compression coup1ing | $\begin{aligned} & \text { 2-inch plastic } \\ & \text { gas pipe } \end{aligned}$ | 2 | 3 | $\begin{aligned} & 1 \text { building } \\ & \text { destroyed, } 1 \\ & \text { damaged } \end{aligned}$ | BAR-78-4 |
| Rupture by excavation equipment | $\begin{aligned} & 10 \text {-inch gas } \\ & \text { pipeline } \end{aligned}$ | 0 | 2 | None reported | PAR-78-5 |
| Fatlure of pipeline due to combined stresses when it was lowered previously and a dent and gouge | $\begin{aligned} & \text { 8-inch LPG } \\ & \text { pipeline } \end{aligned}$ | ${ }^{2}$ | 3 | 1 farmhouse \& 6 outbuildings destroyed, 2 houses damaged | PAF-79-1 |
| Increase in pressure and corrosion hole in pipe | 7-inch bare steel gas | 0 | 2 | 5 buildings destroyed, 2 damaged | PAR-79-2 |
| Erosion of soil under pipe | 8-inch, castiron gas main | 7 | 19 | $\begin{aligned} & 3 \text { buildings } \\ & \text { destroyed, } \\ & 7 \text { damaged } \end{aligned}$ | PAR-79-3 |


[^0]:    ${ }^{8}$ Report Number NTSB-PSS-71-1.

[^1]:    
    

[^2]:    whe por 1363.2 (11/70)

[^3]:    ${ }^{5}$ This recommendation is similar to Recommendation $1(a)$ in the Burlington, lowa, pipeline accident report. (See Reference 3.)

[^4]:    3 Rever mo. witnin-72a.

[^5]:    4

[^6]:    In quelificd velders to instruct its personol in the proper inetallation of fillet meldins oa repalr sleeves. (P-76-31) (claee IL. Priortit Pollowep)

    - Aseare that any coatractor angeged to do pipalive repalm in temillar riti keat fexns Gulf operation and malntenance proceduree and lasist that the contractor have avallable and use the rapulred
    

    Inotract ita minteance and operatios permonol in the hacarls of porting around iver crode oil. ( $\mathrm{P}-76$-33) (Class II, Prionisy Pellomip)

    Gruip ite compary vehicles or provide, at atrategic locations. crise breaching equipment, safety ropes, and gas vapor detection instrimente. Moaltor employee actions to insure that equipeeat is med in accordance vith vrittea procedures. (P-76-36) (Clase II,

    Tranine the repair records for its pipelise systen to deternime where ocher fillet veld repairs had been made and excavate the plpeline at these locationa to inspect the fillet veld quality. (1-76-35) (Clase II, Priority Follomp)"

    ## TIE HITOML THASRORTATION SAFETY BONDD

[^7]:    "Reemphasize to city personnel who are asigned to the emersency deak the importance of helping people who call to to report gas leaks, and require the personnel to furnish emercency gas company numbere to the public. (P-76-56) (Clase II, Priority Followup)
    "Coordinate emergency activities with the gas company and determine what responses should be made to various types of gen emergencies. (P-76-57) (Clasa LI, Priority Followup)"

[^8]:    
    
     Eriaits Polinap)"

[^9]:    Trala operation personnel from otber atations and other searty operating divisions of the company on the operation of emertency transisision libe valves and emergency station fire control valves. Puraish anch searby company office that could be expected to help In an anersency with a contingency plan book and drewhet of all of the facilities they aight be expected to oparate. (Clase II. Priority Follown) ( - to the Materials Iramportation Bureau of the 0.8 . Departmant of

    Cloviev compreasor station sceldente to chernioe if there have bea itallar problens vith remote-control shutdon devices. If there have beeq reliability problem, enke a eurvey to deternine che optinn cime between laspections and amend 49 CFR 192.731(c) by decreasing the cime interval between inspection and cestian frow the current minitu of 1 jear to reflect these fisdings. (cinas 1II, Loager Term Foilown) (P-77-34)
    "Ald to 49 CFR 192 a requireneat for poenntic-operated compreseor station equipeeot, sinilar to the requirement in 49 CRL 192.167(3) for electric-operated equipent, to isolate instrment alr cepply to atomatic facilities, and to prowide backup or separate amprseacy Famentic facilitice. (Clase III, Longer Ter Follonop) (R-77-35)
    -Add to 49 Gri 192.729 a sectica to requite the proper corquint procedures for atude, as specified by the compressor moufecturer. whea reascembing compressors after maintenace work. Include periodic testing of these stude, by ultrasoaic or other mana, to
     Pollowap) (1-77-36)"

[^10]:    "Redesigu the Liquid Pipeinne A:ciient Reporting System to include data similar to that collected in the Natural Gas Accident Reporting System. (Class III, Longer Term Action) (P-78-59)
    "Provide clear instructions and definitions to insure the accuracy and consistency of the data recorded on the liquid pipeline accident report forms. (Class III, Longer Term Action) (P-78-60)

[^11]:    "Require municipalities to incorporate the amended State 'Underground Facility Safety and Damage Prevention Act' in the specifications of construction projects which use large excavating equipment and during which gas pipeline facilities will be crossed, and require that the contractor have the specifications with the State law requirements at the jnb site for ready reference by the workers. (Class III, Longer Term Action) ( $\mathrm{P}-78-81$ )"

